Probing the Heavens from Deep Underground: A Proposal

Rajarshi Raut UGC-DAE Consortium for Scientific Research, Kolkata Centre

for a collaboration between UGC-DAE CSR &

University of Delhi, Banaras Hindu University, Aligarh Muslim University, Mangalore University, Calicut University, Panjab University, Central University of Kerala, Central University of Haryana, University of Calcutta, Visva Bharati, IIT Ropar, IIT Roorkee

Meeting@TIFR, 6-7 August, 2022

Connecting the Earth & the Heavens There is NO accelerator up there ! Energies for the NUCLEAR reactions provided by the THERMAL motion of the nuclei: THERMONUCLEAR reactions. Maxima of the Maxwell-Boltzmann distribution in (i) Sun (15 MK): 1.3 keV (ii) classical nova (300 MK): 26 keV (iii) supernova (5 GK): 430 keV Stars are "cold" Gamow (1928), Condon & Gurney (1929): tunneling through the Coulomb barrier Probability for tunneling (at E << Ec), $P = exp(-2\pi\eta)$ $\{2\pi\eta = 0.98951013^{*}Z_{0}^{*}Z_{1}^{*}[m_{01}^{*}(1/E)]^{1/2}\}$

Window for Stellar Reactions

$$N_A \langle \sigma v \rangle = \left(\frac{8}{\pi m_{01}}\right)^{1/2} \frac{N_A}{(kT)^{3/2}} S_0 \int_0^\infty e^{-2\pi\eta} e^{-E/kT} dE$$

Δ

10⁻² (a) Probability (arb. units) **10**⁻⁶ 10⁻¹⁰ $e^{-2\pi\eta}$ 10⁻¹⁴ 10⁻¹⁸ $e^{-E/kT}e^{-2\pi\eta}$ 10⁻²² 10⁻²⁶ 10-30 0.2 0.4 0.6 0.8 1.2 b E_=0.32 MeV Probability (arb. units) 1.5 1 exact approx kΤ 0.5 0 0.6 0.8 ٥ 0.2 0.4 1.2 Energy (MeV)

tends to 0 for small energies

tends to 0 for large energies

Maximized at the Gamow Peak with,

$$E_0 = 0.1220 \left(Z_0^2 Z_1^2 \frac{M_0 M_1}{M_0 + M_1} T_9^2 \right)^{1/3}$$
(MeV)

$$=\frac{4}{\sqrt{3}}\sqrt{E_0kT}=0.2368\left(Z_0^2Z_1^2\frac{M_0M_1}{M_0+M_1}T_9^5\right)^{1/6}$$

 ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction illustrated here

Heart of the Problem

Measurement of cross-sections at the Gamow peak or nearest to it

Repeated measurements for a single reaction, trying to improve on the uncertainties & to reach as close to the Gamow window as possible.

101-10 1088/0034-4885/72/8/08630

IOP PUBLISHING Rep. Prog. Phys. 72 (2009) 086301 (25pp)

LUNA: a laboratory for underground nuclear astrophysics

H Costantini¹, A Formicola², G Imbriani^{3,4}, M Junker², C Rolfs⁵ and F Strieder⁵

5. The future of underground laboratories

Although LUNA is yet unique in the world and will continue for several more years, it is hoped that similar facilities will be created in time worldwide. Each fusion reaction takes a couple of years for its complete study. Since there are many reactions to be reinvestigated, there is a clear need for additional underground facilities. We discuss in the following sections What do you Ask for in a Nuclear Astrophysics Research Facility ?

Accelerator Characteristics

Energy, Stability, Resolution, Current, Provision for Beam Diagnostics etc.

Setup Characteristics

Target chamber (current measurement, target monitoring, detector positions, target cooling) Detection setups (efficiency, resolution) Background Characteristics Passive shielding & active shielding Analysis techniques (Coincidence gating) for background reduction.

Background & Its Reduction Beam Induced (target contaminants etc.) Sources Natural (Cosmic, room....) Compton / pair-production interactions

Nuclear Astrophysics Underground LUNA @ LNGS

Rock overburden of 1400 m (3800 m.w.e)

Reduction in muon component (by 10⁶), neutron component (by 10^3) and γ component (by 10) γ background above 3 MeV in a HPGe detector reduced by a factor of 2500. Enhancing the effect of passive shielding Two accelerators 50 kV (home-made) & 400 kV (commercial) Intense beam currents, long-term stability (max. reaction rate), precise energy determination (exp. energy dependence of the x-section)

Measurements at the Underground Facility LUNA @ LNGS Study of p-p chain reactions at Gamow peak energies ³He(³He, 2p)⁴He & d(p, γ)³He (with 50 kV machine) Reactions studied at the 400 kV machine $^{14}N(p,\gamma)^{15}O$ (impact on the CNO neutrino production & on the age of globular clusters) 3 He(4 He, γ)⁷Be impacting ⁷Li production in BBN $^{15}N(p,\gamma)^{16}O$ (CNO) and $^{25}Mg(p,\gamma)^{26}AI$ (MgAI) $^{17}O(p,\gamma)^{18}F$ (CNO) (classical novae) ²H(α,γ)⁶Li (⁶Li production in BBN) $^{17}O(p,\alpha)^{14}N \& ^{22}Ne(p,\gamma)^{23}Na$ (NeNa)

Nuclear Astrophysics Underground JUNA @ CJPL

Rock (marble) overburden of 2400 m; radioactively quiet

Cosmic background TWO orders of magnitude less than in Gran Sasso

Accelerator

400 kV high current accelerator for nuclear astrophysics.

Reactions

¹² $C(\alpha,\gamma)^{16}O$, ¹³ $C(\alpha,n)^{16}O$, ¹⁹ $F(p, \alpha)^{16}O$: at or near Gamow window; x-sections ~ pbarn & lower ²⁵Mg(p, $\gamma)^{26}Al$: precise measurement of 92 keV

resonance

https://doi.org/10.1051/epjconf/202226008001

Higher & Heavier Beyond H-burning - reactions at higher temperatures (energies)

Need for higher voltage MV accelerators.

Prospective pursuits

¹²C(α,γ)¹⁶O (Gamow energy ~ 300 keV): decides He-burning time scale. C,O abundance at the end of He-burning. Ne, Na, Mg, Al ejected during Type II SN scales with C abundance. Stellar models sensitive to the x-section. Precision ~ 10% or better, required to constrain stellar evolution.

¹³ $C(\alpha,n)^{16}O(Q = 2.216 \text{ MeV})$ & ²²Ne $(\alpha,n)^{25}Mg(Q = -0.478 \text{ MeV})$ n-sources for s-process. Operate under different conditions. Important for understanding heavy element production.

tions of Interest (Ref.: LUNA	^D roposal) in the Contemporary	uclear Astrophysics Efforts
Reaction	MV Prol	Nucle

Reaction	Gamow	Lowest Energy	Last Measurement	Remarks
	Energy, in	reached in		
	MeV	Measurement, in		
12 16	(T9)	MeV		
¹² C(α,γ) ¹⁶ O	0.2-0.3 (0.1-0.2)	$E_{cm} = 0.89$	Plag <i>et al.</i> Phys. Rev. C86, 015805(2012)	Lowest energy measurement reported by Hammer <i>et al.</i> (Nucl. Phy. A758, 363c(2005)). Energy reached in the last measurement is $E_{cm} = 1.002$ MeV. Measurement down to $E_{cm} =$ 0.95 reported by Kunz <i>et al.</i> (Phys. Rev. Lett. 86, 3244(2001))
¹³ C(α,n) ¹⁶ O	0.2 (0.09)	E _{cm} < 0.3	Heil et al. Phys. Rev. C78, 025803(2012)	Heil <i>et al.</i> measurement upto $E_{cm} = 318$ keV. Lowest energy by Drotleff et al., (Ap. Jour. 414, 735(1993)) with high uncertainty.
²² Ne(α ,n) ²⁵ Mg	0.6 (0.3)	$E_{cm} = 0.482$	Jaeger <i>et al.</i> Phys. Rev. Lett. 87, 202501(2001)	Jacger <i>et al.</i> measurement upto $E_{cm} = 482$ keV. Lowest energy by Drotleff <i>et al.</i> , (Ap. Jour. 414, 735(1993)) with result as upper limit. Very deviant from Jacger <i>et al.</i>
$^{14}N(\alpha,\gamma)^{18}F$	0.3 (0.15)	Resonance at E_{α} (lab) = 0.573 MeV	Gorres <i>et al.</i> Phys. Rev. C62, 055801(2000)	
$^{18}\mathrm{O}(\alpha,\gamma)^{22}\mathrm{Ne}$	0.6 (0.35)	Resonance at E_{α} (lab) = 0.470 MeV	Dababneh <i>et al.</i> Phys. Rev. C68, 025801(2003)	
$^{15}\mathrm{N}(\alpha,\gamma)^{19}\mathrm{F}$	0.35-0.5 (0.2-0.3)	Resonance at E_{α} (lab) = 0.679 MeV	Wilmes <i>et al.</i> Phys. Rev. C66, 065802(2002)	
$^{16}\mathrm{O}(\alpha,\gamma)^{20}\mathrm{Ne}$	0.3	Resonance at E_{α} (lab) = 1.1 MeV	Constantini <i>et al.</i> Phys. Rev. C82, 035802(2010)	
¹² C(¹² C,p) ²³ Na	1.5 (0.5)	$E_{lab} = 2.1 \text{ MeV}$	Spillane <i>et al.</i> Phys. Rev. Lett. 98, 122501(2007)	Also considered in a feasibility study by Caciolli <i>et al.</i> (Eur. Phys. Jour. A39,
$12^{12}C(12^{12}C,\alpha)^{20}Ne$	1.5 (0.5)	$E_{lab} = 2.1 \text{ MeV}$	Spillane <i>et al.</i> Phys. Rev. Lett. 98, 122501(2007)	179(2009)).

MV & Underground LUNA-MV: 3.5 MV single ended accelerator to produce H, He, ¹²C beams; two beam lines for solid & gas target experiments.

CASPAR: 1 MV tandem accelerator from University of Notre Dame installed at the Sanford Underground Research Facility (SURF), USA. Depth of 4850 ft. (4300 m.w.e.) H, He beams

Felsenkeller: "shallow underground accelerator laboratory" 45 m of (hornblende monzonite) rock coverage located in Dresden (Germany) & housing 5 MV Pelletron

MV accelerator in the country?

Proposal

Low energy (~ 3-4 MV) high current accelerator at an underground site (INO ?)

Superior energy resolution

Stability over long period of operation. Easy operation (possibly unmanned for underground machine)

Experimental facilities

Detectors (gamma, charged particle, neutrons) & associated instrumentation (pulse processing electronics - analog & digital, data acquisition system)

Target Preparation

Workshop

Neutron beam facility in an ISOLATED, SHIELDED site?

Development of the Proposal

20th July, 2022: online meeting of the nuclear physics research community based at Universities & Institutes.

17-18 May, 2017: Workshop for finalizing the proposal, hosted by the Kolkata Centre and attended by interested researchers (~50) from across the country.

11th April, 2017: meeting of the Scientific Management Board of the INO Collaboration @ TIFR.

18-19 March, 2017: Collaboration Meeting of INO @ BHU.

27th August, 2015: meeting with local (Kolkata) participants (from VECC, SINP etc.) at the Kolkata Centre.

24-25 June, 2015: session on the proposal during a workshop at the Mangalore University. Attended by researchers from Universities & Institutes.

Underground Accelerator Wish List

	3.5 MV in-line Sing	letron positive Ion Accelerat	or	
Ι	Ion source & associated beam extraction components	Gas based ECR Ion source Single gas system	Spieces : $1H^+$ (500 eµA, 1200 µA), 4He ⁺ (300 eµA - 700 µA), 12C ⁺ , 12C ²⁺ (100 eµA - 200 µA), +16O2+ (150 eµA - 250 eµA)	High Current
Π	Accelerating system	In-line parallel fed Cockroft Walton type terminal voltage Voltage grading resistors	Terminal Voltage : $0.2 - 3.5$ MV Terminal voltage stability ± 350 V With upgraded system $\pm 100 - 175$ V Terminal ripple 150 V _{RMS} Terminal ripple 20 V _{RMS} with low ripple add-on kit	Energy
		Beam energy spread < 50 eV (currents Beam current stability is typica	estimated) for all terminal voltages and ally 2% for 1 hour.	stability
III	Beamlines	Two beamlines at $\pm 35^{\circ}$ with all vacuum components as well as beam diagnostics components (BPM, focusing elements)	3 m long at $+35^{\circ}$ 2.5 m long at -35°	kperimental Area
		Vacuum system comprising of included. There is a provision for 0° beau	pumps, measuring devices valves are m-dump at the analyzing magnet.	
IV	SF ₆ system	Recovery & pressure evacuation system	Mobile pressure handling vessel Storage tanks Vacuum systems etc.	U C

Tentative Layout

Accelerator + Control + Associated Facilities (Target Laboratory, Detector Laboratory, Electronics Laboratory, Mechanical Workshop, User Office etc.)

Magic Formula: $(3.76/A_{target})$ * Target thickness ($\mu g/cm^2$)

* Beam Current (pnA) = Yield / s

Quantifying the Target Target Thickness

Target Mass thickness of interest

Straight Forward: Measure the mass (precision weighing for mg / μg), Measure the area (graph paper) and......(valid only for reasonably thick target)

Indirect Procedures for thin targets: α -absorption, Rutherford Back Scattering (RBS)

[No target degradation during the experiment]

Cross section measurements plagued by interfering reactions of the beam with the contaminants present, even though in traces, in the target / backing. Possibilities of dominant cross-sections.

Contaminant	Reaction	E_{γ} (keV)
¹⁹ F	$^{19}F(p,\alpha\gamma)^{16}O$	6130
¹¹ B	${}^{11}B(p,\gamma){}^{12}C$	4439
	¹¹ B(p, α)2 α	
¹⁵ N	$^{15}N(p,\alpha\gamma)^{12}C$	4439
¹² C	${}^{12}C(p,\gamma){}^{13}N$	
¹³ C	${}^{13}C(p,\gamma){}^{14}N$	2313
	$^{13}C(\alpha, n)^{16}O$	
¹⁶ O	${}^{16}O(p,\gamma){}^{17}F$	495
²³ Na	23 Na(p, γ) 24 Mg	1369
	23 Na(p, $\alpha\gamma$) 20 Ne	1634
²⁷ AI	27 Al(p, γ) 28 Si	17
		A

Beam Energy Calibration Use of Resonances

Sensitivity of calibration of analyzing magnet to beam line geometry & uncertainties from finite opening angle of beam entrance slits to analyzing magnet.

Constant offset to be incorporated in data analysis.

Quantifying the Beam Beam Current

Measurement of Beam Current: Where ? How ?

Current Meters: reading out current at different positions (preceding the target, at the target & beam dump (Faraday Cup). Facilitate diagnostics

Our interest: Number of beam particles bombarding the target, to be extracted from beam current.

Measurement of beam current preferably at multiple positions (in the proximity of the target). Galinski et al. [@ ISAC-II TRIUMF]

Measurement #1 Total Cross-section from Angular Distribution

 $N_{comp} = \sigma.N_{projectile}.N_{target}$

For every γ -ray transition, $W^{i}(\theta) = A^{i}_{0}[1 + \Sigma_{k=2,4}a_{k}P_{k}(\cos \theta)]$

Measured intensities at each angle corrected for the number of projectiles, efficiency & dead-time.

 $\sigma = \sum_{i=1}^{N} A_{0}^{i} / N_{target}$

Nuclear Instruments and Methods in Physics Research A 754 (2014) 94-100

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research A

journal homepage: www.elsevier.com/locate/nima

The $\gamma\text{-}\mathrm{ray}$ spectrometer HORUS and its applications for nuclear astrophysics

L. Netterdon^{*}, V. Derya, J. Endres, C. Fransen, A. Hennig, J. Mayer, C. Müller-Gatermann, A. Sauerwein¹, P. Scholz, M. Spieker, A. Zilges

14 detector positions (HPGe, Clover / Cluster) with 6 of them Compton suppressed.

Measurement # 2 Total x-section from γ -ray Summing

PHYSICAL REVIEW C 86, 015805 (2012) g

by 3 PMTs

 $^{12}C(\alpha, \gamma)^{16}O$ studied with the Karlsruhe 4π BaF₂ detector

R. Plag^{*} and R. Reifarth Universität Frankfurt am Main, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main,

> M. Heil GSI Darmstadt, Planckstrasse 1, 64291 Darmstadt, Germany

F. Käppeler, G. Rupp, F. Voss, and K. Wisshak of Technology, Campus North, Institute of Nuclear Physics, P.O. Box 3640, 76021 K

 4π BaF₂ @ Karlsruhe (Kaeppler et al.)

> 42 modules (hexagonal & pentagonal), 10 mm id &15cm thick

Coincidence Measurements & Background Suppression

Over Ground Accelerator Facility @ University

Ι

Π

Ш

IV

Man power training.

Target characterization (RBS etc.) for the underground experiments.

Feasibility studies.

Will ensure maximum effective usage of the underground facility.

3.0 MV "T" shaped Tandetron Accelerator System

Ion source & associated beam extraction components	Duoplasmatron Ion source	For direct H- (25 – 35 eµA) & He+ (5 eµA) Other species also supported. With an upgrade higher beam currents are also available.
	Single source heavy-ion sputter source	Can be configured for multi target with add-on All species except inert gases
	Option for higher beam currents also available.	
Accelerating system	Medium current plus parallel Cockroft Walton type terminal voltage power supply.	Terminal Voltage : $0.2 - 3.0 \text{ MV}$ Terminal voltage stability $\pm 300 \text{ V}$ Terminal ripple 300 V _{RMS} Terminal ripple 30 V _{RMS} with low ripple add-on kit
	Options for beam bunching Ports at $\pm 30^{\circ}$ at the analyzer. O	ption for multiport also available.
Beamlines	Three beamlines at $\pm 30^{\circ}$ and at 100, with all vacuum components as well as beam diagnostics components (BPM, focusing elements) Vacuum system comprising of included.	3 m long beamlines pumps, measuring devices valves are
SF ₆ system	Recovery & pressure evacuation system	Mobile pressure handling vessel Storage tanks Vacuum systems etc.

Summary & Outlook

Will be one of the few such facilities in the world & will attract international collaborations.

Will warrant the contribution of the Indian community in the global endeavours being pursued in the domain of nuclear astrophysics research.

Will provide a training ground in the field of precision measurements.

Will lead to collateral developments in instrumentation and computational infrastructure.

Collaborations Invited !