Future of Atmospheric Neutrino Studies

Roger Wendell Kyoto University International Workshop for INO, IICHEP, and Beyond 2021.02.20

About the Atmospheric Neutrino Flux

 $P + A \rightarrow N + \pi^+ + x$

 $\mu^+ + \nu_\mu$

 $\rightarrow e^+ + v_e + v_{\mu}$ \overline{v}_{u}

Atmospheric Mixing Parameters: Present and Future

- Atmospheric neutrino oscillation parameter measurements are increasingly dominated by results from accelerator neutrino experiments
- What is left for atmospheric neutrinos ?

Atmospheric Mixing Parameters: Present and Future

- Atmospheric neutrino oscillation parameter measurements are increasingly dominated by results from accelerator neutrino experiments
- What is left for atmospheric neutrinos ?

Open Questions and Roles for Atmospheric Neutrinos

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

arXiv:2006.11237v2

Atmospheric

- Three mixing angles, two independent mass differences (Δm_{21}^2 , Δm_{32}^2), and a CP violating phase δ_{cp}
- Currently, *all* parameters have been measured, though δ_{cp} is the least well constrained and the topic of much interest
- However, several open questions remain

parameter best fit $\pm 1\sigma$ 2σ range 3σ range $7.50^{+0.22}_{-0.20}$ $\Delta m_{21}^2 [10^{-5} \text{eV}^2]$ 7.12 - 7.936.94 - 8.14 $2.55^{+0.02}_{-0.03}$ $|\Delta m_{31}^2|[10^{-3} \text{eV}^2]$ (NO) 2.49 - 2.602.47 - 2.63 $2.45_{-0.03}^{+0.02}$ $|\Delta m^2_{31}|[10^{-3} eV^2]$ (IO) 2.39 - 2.502.37 - 2.53 $\sin^2 \theta_{12} / 10^{-1}$ 3.18 ± 0.16 2.86 - 3.522.71 - 3.69 $\theta_{12}/^{\circ}$ 34.3 ± 1.0 32.3 - 36.431.4 - 37.4 $\sin^2 \theta_{23}/10^{-1}$ (NO) 4.34 - 6.10 5.74 ± 0.14 5.41 - 5.99 $\theta_{23}/^{*}$ (NO) $49.26 \pm 0.79 \quad 47.37 - 50.71$ 41.20-51.33 $5.78^{+0.10}_{-0.17}$ $\sin^2 \theta_{23} / 10^{-1}$ (IO) 5.41 - 5.984.33 - 6.08 $49.46_{-0.97}^{+0.60}$ $\theta_{23}/^{\circ}$ (IO) 47.35 - 50.6741.16 - 51.25 $2.200\substack{+0.069\\-0.062}$ $\sin^2 \theta_{13} / 10^{-2}$ (NO) 2.069 - 2.3372.000 - 2.405 $8.53\substack{+0.13 \\ -0.12}$ $\theta_{13}/^{\circ}$ (NO) 8.27 - 8.798.13 - 8.92 $2.225\substack{+0.064\\-0.070}$ $\sin^2 \theta_{13} / 10^{-2}$ (IO) 2.086 - 2.3562.018 - 2.424 $8.58^{+0.12}_{-0.14}$ $\theta_{13}/^{\circ}$ (IO) 8.30 - 8.838.17 - 8.96 $1.08\substack{+0.13\\-0.12}$ δ/π (NO) 0.84 - 1.420.71 - 1.99 194^{+24}_{-22} $\delta/^{\circ}$ (NO) 152 - 255128 - 359 $1.58\substack{+0.15\\-0.16}$ δ/π (IO) 1.26 - 1.851.11 - 1.96 284^{+26}_{-28} $\delta/^{\circ}$ (IO) 226 - 332200 - 353

Solar

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Atmospheric

Solar

Mass Ordering is Unknown

Are the electron-rich states $v_1 \& v_2$ heavier or lighter than v_3 ?

- Important implications for
 - GUT Models

...

Neutrinoless double beta decay

 $\Delta m_{32}^2 > 0$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Atmospheric Solar

---- NO

Do neutrino oscillations violate CP? (sin $\delta \neq 0$?)

- New sources of CP violation needed to explain matter dominant universe
- Allowed within vSM
- <u>Atmospheric</u> neutrinos play a role in each of these

Supernova Relic Neutrinos

Events/2-MeV

- Expect a cosmic bath of neutrinos from all past supernovae
 - Flux ~ CCSN rate, progenitor mass multiplicity, cosmology
- Estimates of $< 5 / \text{cm}^2/\text{s} \rightarrow 6-10 \text{ ev/year in Super-Kamiokande } [22.5kton]$
- Backgrounds from atmospheric neutrinos
 - Uncertainties in flux, cross-section, neutron spectra, γ spectra, large or unknown
 - Must be measured and constrained!

Astrophysical Neutrinos

00

1.0

arXiv:2011.03561v1

UHE astrophysical neutrinos have been observed atop atmospheric v backgrounds

- What is the power law for UHE v?
- Source flavor ratio determines ratio at Earth, what are they?
- What is the neutrino-antineutrino ratio at Earth?
- Atmospheric neutrino studies can help with these questions

Hyper-Kamiokande Nucleon Decay Discovery Potential

Backgrounds to proton decay searchers are exclusively from atmospheric neutrinos

- Phase space is limited, rare processes unmeasured or come with large uncertainties
- Neutron tagging can reduce backgrounds, but neutron spectrum in atmospheric neutrino interactions largely unknown

Hyper-Kamiokande Nucleon Decay Discovery Potential

Backgrounds to proton decay searchers are exclusively from atmospheric neutrinos

- Phase space is limited, rare processes unmeasured or come with large uncertainties
- Neutron tagging can reduce backgrounds, but neutron spectrum in atmospheric neutrino interactions largely unknown

Future of Atmospheric v Studies: In a word

- Oscillation measurements will benefit directly and indirectly from measurements with atmospheric neutrinos
- Atmospheric neutrino interactions will provide valuable information on backgrounds and expected signals at future facilities
- Improvements in flux and interaction uncertainties over the range of atmospheric neutrino energies will benefit both of the above

There is a lot of work left to do!

The Major Players

The Major Players

Detector	Target	Size	Threshold	PID	v/vbar
Super-K	H ₂ O (lq)	50 kton	5 MeV	e-like / μ-like	Statistical
Hyper-K	H ₂ O (lq)	290 kton	5 MeV	e-like / μ-like	Statistical
I.C. Deep Core	H_2O (ice)	6 Mton	5 GeV	Casc./Track	
I.C. Upgrade	H_2O (ice)	1 km³	3 GeV	Casc./Track	
I.C. Gen2	H_2O (ice)	8 km ³	~100 GeV	Casc./Track	
Antares	H ₂ O (lq)	0.02 km ³	20 GeV	Shower/Track	
KM3NeT Orca	H ₂ O (lq)	~10 Mton	1 GeV	Shower/Track	
KM3NeT Arca	H ₂ O (lq)	1 km³	~200 GeV	Shower/Track	
DUNE	Ar (lq)	40 kton	5 MeV	Charged	Statistical
ICAL	Fe	50 kton	1 GeV	Tracks	Yes

Most present and future atmospheric neutrino detectors cannot distinguish neutrinos from antineutrinos well

Many complementary experiments covering complementary energy regions

Mass Hierarchy Determination and the Matter Effect

Neutrino Oscillations

- v_e traveling through the earth experience resonant-enhanced oscillations which depend on the mass hierarchy
- NH : neutrinos experience the resonance
- IH : antineutrinos experience the resonance
- However the size of the resonance depends on θ_{13} , θ_{23} , δ_{cp} , and the density of electrons in the Earth

Mass Hierarchy Determination and the Matter Effect

ZENITH **Normal Hierarchy** perpendicular to Earth's surface Crust 3.3 g/cm³ 0.9 0.9 Mantle 5.0 g/cr 0.8 0.8 Cosine Zenith Angle 0.7 Zenith Angle 0.7 Outer core 11.3 g/ 0.6 0.6 Inner core 13.0 0.5 0.5 0.4 0.4 0.3 0.3 -0.5 -0.5 0.2 0.2 0.1 0.1 10² 10² 10 10 Neutrino Energy [GeV] Neutrino Energy [GeV] (a) $P(\nu_{\mu} \rightarrow \nu_{\mu})$ (b) $P(\nu_{\mu} \rightarrow \nu_{e})$

Neutrino Oscillations

- v_e traveling through the earth experience resonant-enhanced oscillations which depend on the mass hierarchy
- NH : neutrinos experience the resonance
- IH : antineutrinos experience the resonance
- However the size of the resonance depends on θ_{13} , θ_{23} , δ_{cp} , and the density of electrons in the Earth

Mass Hierarchy Determination and the Matter Effect

ZENITH **Normal Hierarchy** perpendicular to Earth's surface Crust 3.3 g/cm³ 0.9 0.9 Mantle 5.0 g/cr 0.8 0.8 Cosine Zenith Angle 0.7 Zenith Angle 0.7 Outer core 11.3 g/ 0.6 0.6 0.5 0.5 Inner core 13.0 0.4 0.4 0.3 0.3 -0.5 -0.5 0.2 0.2 0.1 0.1 10² 10² 10 10 Neutrino Energy [GeV] Neutrino Energy [GeV] (c) $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu})$ (d) $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$

Antineutrino Oscillations

- v_e traveling through the earth experience resonant-enhanced oscillations which depend on the mass hierarchy
- NH : neutrinos experience the resonance
- IH : antineutrinos experience the resonance
- However the size of the resonance depends on θ_{13} , θ_{23} , δ_{cp} , and the density of electrons in the Earth

Super-Kamiokande Prospects : Mass Hierarchy Sensitivity

Modest sensitivity improvement expected with improved reconstruction ("fiTQun")
 Reduce vµ and NC backgrounds and allows for expanded
 20

Super-Kamiokande Prospects : Mass Hierarchy Sensitivity

Super-Kamiokande Prospects : Mass Hierarchy Sensitivity

Standalone MO Measurements

Measurements with only atmospheric neutrinos should exceed 3σ in all but the most pessimistic cases

Lots of ideas for improving sensitivity faster:

- Neutron tagging (Water Cherenkov)
- Proton-Lepton kinematics (LAr)
- Magnetization (Fe)

Expect even further improvement with combined measurements

Cooperative MO Measurements

N. Chau Neutrino 2020

- Combination of JUNO (reactor) and Neutrino Telescopes provides powerful synergistic constraints on the MO
- Conflict of hierarchy+parameter effects in their respective sample allows for stronger constraints than naïve combination of the experiments

Hyper-K: Beam and Atmospheric Neutrino

Sensitivity to matter effects (mass hierarchy) increased with improved constraint on atmospheric mixing parameters

Measurement of CP phase is dominated by accelerator measurement, but parameter degeneracies are broken by atmospheric component, resulting in better sensitivity faster

Expect similar improvements from combined measurements at DUNE

Mass Ordering Significance by Approximate Date ($\sin^2\theta_{23}=0.6$)

Experiment	2021	2026-7	2031	2036
Super-K	2.5σ	3σ		
T2K /-II		~10		
NOvA	3.4σ	4.4σ		
KM3NeT (Orca)		5σ	7σ	
IceCube (Pingu)		>40		
JUNO		3σ		
ICAL-INO		2σ	3σ	~40
DUNE		3σ	5σ	~7σ
Hyper-K (+beam)			4σ	~60
JUNO+PINGU		1	0σ	
JUNO+ORCA			10σ	26

The Door Swings Both Ways: Combining Beam and Atm ν

Plot shows the ability to reject $sin(\delta) = 0$ points

Expected sensitivity improves (beam only) when the mass hierarchy is known with high precision

What about CP Measurements with Atmospheric v?

FERMILAB-PUB-19-136-T, NUHEP-TH/19-03

- CP effect largest at low energies, highly complementary to beam measuremests
 → Many baselines gives acces to cos(δ)
- Flux uncertainties are large
- Dominated by CCQE interactions, poor resolution on neutrino direction without kinematic reconstruction of full final state
- Fast oscillations smear out the CP signal

What about CP Measurements with Atmospheric v?

FERMILAB-PUB-19-136-T, NUHEP-TH/19-03

One 17-kt Module

Impact of Various Systematic Error Sources: δ_{CP} Measurement All Error

Without significant improvements in flux and cross section systematic errors it will be difficult for atmospheric neutrinos to compete with acceleratore measurements

 $\bullet \rightarrow \text{Complementary}$

Hyper-Kamiokande : Mass Hierarchy Prospects

Multi-GeV e-like v_e

- Tau neutrinos are expected to appear in the same kinematic region as the mass hierarchy signal
- Uncertainty in the tau cross section (currently ~25%) has a large impact on expected sensitivity
- In addition, $\nu\mu$ and NC backgrounds present in signal sample

Search for Tau Neutrinos

PHYS. REV. D 99, 032007 (2019)

- No $v\tau$ in atmospheric flux below 100 TeV
- Search for evidence of oscillation-induced tau interactions
- Appear as increase in number of cascadelike events (hadronic decay of tau)
- Use BDTs to extract signal, incurs large backgrounds, constrained by zenith and energy distributions
- IceCube finds 3.2σ significance for appearance of tau events (CC+NC)
- Complementary to other recent searches
 - 6.1 σ from Opera (acc. 2018)
 - 4.6 σ from Super-K (atm. 2018)

Search for Tau Neutrinos

PHYS. REV. D 99, 032007 (2019)

- No $v\tau$ in atmospheric flux below 100 TeV
- Search for evidence of oscillation-induced tau interactions
- Appear as increase in number of cascadelike events (hadronic decay of tau)
- Use BDTs to extract signal, incurs large backgrounds, constrained by zenith and energy distributions
- Expect precise measurements of tau normalization at future detector
 - IceCube Upgrade: << 10%
 - Hyper-K : ~10%

Sterile Neutrino Searches:

- Add an additional mass state for a neutrino with no weak interactions and expand mixing matrix accordingly
- Track-like events from 20~100 GeV used in Antares study
- Present results in the atmospheric mixing community are compatible with pure MNS mixing, but expect improved sensitivity at at future experiments

$$U_{\mu 4} = e^{-i\delta_{24}} \sin \theta_{24} ,$$
$$U_{\tau 4} = \sin \theta_{34} \cos \theta_{24}$$

JHEP06(2019)113

Sterile Neutrino Searches:

Sterile neutrino oscillation sensitivity limited by uncertainties in flux (and cross section) around 1 GeV

Particularly $U_{\mu4}$ at water Cherenkov will be difficult

 $U_{\mu4} = e^{-i\delta_{24}} \sin \theta_{24} ,$ $U_{\tau4} = \sin \theta_{34} \cos \theta_{24}$

PHYSICAL REVIEW D 91, 052019 (2015)

Non-Standard Interactions : $\mu - \tau$

Standard oscillations

 $\nu_{\mu} \rightarrow \nu_{\mu}$

μ - τ Fit

- Fixing other parameters to zero fit only $\mu - \tau$ parameters
- Current measurements are compatible with no NSI at 90% C.L.
- Several single parameter limits, but expect considerable improvement from high—statistics neutrino telescope data
- Improved sensitivity with v/vbar

Non-Standard Interactions : $\mu - \tau$

ARES Sensitivity

ORCA Sensitivity (3 years)

0.010

DeepCore Limits (2018) Super-K Limits (2011)

- Several single parameter limits, but expect considerable improvement from high—statistics neutrino telescope data
 - Improved sensitivity with v/vbar

N.R.K Chowdhury Neutrino 2020

0.000

0.005

-0.005

 $\chi^2_{\rm s}$

n

-0.010

Non-Standard Interactions : $\mu - \tau$

Standard oscillations

μ - τ Fit

- Fixing other parameters to zero fit only $\mu - \tau$ parameters
- Current measurements are compatible with no NSI at 90% C.L.
- Several single parameter limits, but expect considerable improvement from high—statistics neutrino telescope data
- Improved sensitivity with v/vbar

Sensitivity to Non-Standard Interactions : e- τ

Modest sensitivity improvements with increased exposure
 Limitations due to flux uncertainties at highest energies for Hyper-K

Lorentz-Invariance-Violating Oscillations $H_{\text{LV}} = \mathring{a}^{(3)} - E\mathring{c}^{(4)} + E^2\mathring{a}^{(5)} - E^3\mathring{c}^{(6)} \cdots$

- Include Lorentz-violating operators from effective field theory (Standard Model Extension), that induce oscillations that are a function of L×Eⁿ
- Present v limits dominanted by IceCube, Super-K, but expect further constraints from future detectors

High Energy Neutrino Interaction Cross Section

- At TeV energies the Earth becomes increasingly opaque to neutrinos
 Observable as a depletion in the upward-going neutrino rate
- Interaction cross section is proportional to neutrino energy at low energies
 - For momentum transfer comparable to the weak boson mass, increase with energy slows
 - BSM physics can enhance and supplement the cross section

High Energy Neutrino Interaction Cross Section

Analysis uses 10,784 upward-going muons from IceCube-79 data

$$\sigma = 1.30^{+0.21}_{-0.19}(stat)^{+0.39}_{-0.43}(syst.) \sigma_{SM}$$

- No indication of deviation from SM
- First measurement about 370 GeV, extensible to higher energies with next-generation detectors with reduced statistical uncertainty

High Energy Neutrino Inelasticity

PHYS. REV. D 99, 032004 (2019)

- IceCube has demonstrated ability to measure inelasticity: fraction of energy going to hadrons (y_{vis}) in track-like sample
- Measurement with atmospheric neutrinos at next-generation facilities will have much higher statistics
 - Prospects for n/nbar ratio <10 TeV</p>
 - Constraints on charm production

High Energy Neutrino Inelasticity

- IceCube has demonstrated ability to measure inelasticity: fraction of energy going to hadrons (y_{vis}) in track-like sample
- Measurement with atmospheric neutrinos at next-generation facilities will have much higher statistics
 - Prospects for n/nbar ratio <10 TeV</p>
 - Constraints on charm production

Future : Earth Tomography with Atmospheric Neutrinos

- Core-crossing atmospheric neutrinos can probe electron density of the core via its impact on their oscillations
- High-statistics observations can be used to determine the electron content of the Earth
- Important in geophysics for understanding the origin of the Earth's magnetic field
 Cannot be done by other means at present and is currently completely unmeasured

Example of tomographical studies with public data here : NATURE PHYSICS 15(2019) 37–40

Future : Neutrino Tridents with Atmospheric Neutrinos

- Standard model predicts neutrino trident production at about 10⁻⁶ the rate of other CC processes
 - Can also be mediated by exotic scalar (S') or vector (Z') bosons which may enhance the cross section considerably

Neutrino telescopes using atmospheric neutrino at high energies are a potentially powerful tool for observing these events

N.B. reconstruction will be challenging

Atmospheric v Flux and Cross Sections Studies for the Future

https://indico.cern.ch/event/873509/

2nd Workshop for Atmospheric Neutrino Production in the MeV to PeV

- Several efforts are underway to updated and modernize atmospheric neutrino flux calculations across all energies to address uncertainties that will affect future measurements
 - Improved geo-modelling
 - Improved hadron modeling based on accelerator hadron production data
 - Correlations between atmospheric v and beam v fluxes, atmospheric μ etc.

Summary and Conclusions

Still a lot of work to do with atmospheric neutrinos

As signal:

- PMNS oscillations (MH, Octant, CP)
- Cross sections (Tau appearance, DIS at high energy, inelasticity)
- Exotic scenarios (NSI, LV, new bosons, non-unitarity, etc.)
- Prompt flux
- As background:
 - Need for better flux and cross section measurements and models to improve discovery potential of many searches (including the above)

The future seems to be equal parts "low energy" O(1) GeV and "high energy" >1 TeV, but large detectors with large "dynamic range" will be key going forward

Importantly, these studies have significant ramifications for many other measurements

Supplements