ECAL for the MPD.

DUNE ND Workshop

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Eldwan Brianne TIFR Mumbai, 27th February 2020

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Outline.

- ECAL Motivation and Design ullet
- Technical choices \bullet
- Performance ullet
 - Geometry design ullet
 - Absorber lacksquare
 - Segmentation lacksquare
- Ongoing work and future plans •

Page 2

The MPD ECAL - Concept. Goals

- MPD is high precision measurements of neutrinos on Ar \bullet
 - Need for full coverage and precise measurement of ${\bullet}$ charged and neutral particles
- The MPD ECAL will complement the HPgTPC by providing ullet
 - Photon energy measurement
 - Neutral pion measurement
 - Particle identification (over 1 GeV/c)
 - Precise time measurement **tagging** the interaction window to reduce OFV background
 - Ideally detected neutrons and measure their energy \bullet
- Energy range between few MeVs to few GeVs! \bullet
 - requires a small stochastic term
 - Iongitudinal/lateral segmentation \bullet

The MPD ECAL. Key numbers

- Energy resolution \bullet
 - ~5-6%/Sqrt(E[GeV]) \bullet
 - Need for thin absorbers \bullet
- Pointing resolution \bullet
 - ~few deg /Sqrt(E[GeV]) \bullet
- drives longitudinal segmentation / granularity
- Neutrons me few 100 ps 1 ns time resolution \bullet

The MPD ECAL. **Bondary conditions**

- ECAL surrounds the pressure vessel \bullet
 - TPC: 2.7 m radius, 5.5 m length
- ECAL needs to accommodate this and the PV \bullet
 - Radius 2784.5 mm \bullet
 - Length 7288.5 mm lacksquare
- Total surface \bullet
 - 120 m2 for the barrel \bullet
 - 24 m2 per endcap ullet
- This is huge! ullet
 - Comparison CMS ECAL \bullet
 - 1.3 m radius, 5.8 m length •

The ECAL design (as in the CDR). Geometry (Baseline)

- Best approximation of cylinder
 - Octagonal geometry
- Small side length ~2.3m, Large side length ~2.6m, Width ~1.5m
- Total weight ~ 300t Interpretent Lots of bkg! (~1/60 ratio between TPC/ECAL)
- Barrel divided in 5 sub-modules 1.46 m long
- Endcap divided in quarters 4 modules per side

The ECAL design (as in the CDR). **Geometry (Baseline)**

- Absorber using very thin sheets of copper (2 mm) \bullet
 - ~cm radiation length and "Small" Molière radius \bullet
 - larger spread of the shower along its main axis, helps in the reconstruction of the photon axis
- Granularity, two levels: \bullet
 - High granular layers with tiles of 2.5x2.5x5 cm³ readout \bullet with SiPM
 - Low granularity layers with strips of 4 cm width readout \bullet on both sides
- High granularity only in first 8 (6) layers for 3 downstream (5) \bullet upstream) segments - under optimization
- Assuming spatial resolution along strip via time difference in \bullet two-sided readout
- Channel count:
 - 2,394,183 tiles and 142,030 strips

The ECAL design. **Performance numbers (Baseline)**

- Sampling structure \bullet
 - 2 mm Cu / 5 mm Sc \bullet
 - 60 layers: 8 high granularity layers (tiles) and 52 low granularity layers (strips)
- "Best" performance so far \bullet
 - ~5.6%/Sqrt(E)+ 4%
 - \sim 6.3deg/Sqrt(E) + 3.9 deg
- Optimising based on this \bullet
 - Detector shape (polyhedra with more sides to fit more layers)
 - Absorber type Cu
 Pb (cost)
 - Granularity (cost)
 - **Neutron detection!** (more plastic, less non-active material in front)

Impact of the ECAL geometry. Geometry

- Baseline shape I Octagon \bullet
 - Not optimal in between cylinders (TPC/Magnet) \bullet
- Going for higher number of sides Dodecagonal \bullet
- Advantage
 - Can fit more layers in the same volume \bullet
 - Shorter modules (shorter strips in less attenuation/better \bullet timing)
- Better energy resolution and angular resolution \bullet
 - Recover leakage with more layers. ~2-3% better at higher energies, but may not be as important me most photons have energies below 1 GeV
 - Angular resolution better due to shorter strips? In need \bullet more understanding
 - Slight increase in cost (more layers) •

Impact of the absorber material. Revisiting Lead

- Revisit Pb as Cu is expensive
- Geometry change
 - 8 HG layers and 82 LG layers + 2 thick slabs (130 mm) in the back
 - Increase from 1 λ to 1.5 λ (better for mu/pi ID)
 - Sampling structure: 0.5 mm Pb (keep same material budget as Cu) / 3 mm Sc (not optimized)
- Energy resolution
 - Better at lower photon energies is slight increase in sampling frequency
- Angular resolution
 - Worse due to larger Molière radius (shower looks more "blobby")
 - Decrease of Sc thickness (PCA favours high energy depositions)
 - Will also impact neutron detection efficiency!
- Optimization towards
 - Increase Sc thickness
 - Thinner Pb absorber layers in the front

Impact of the lateral segmentation. **Replacing tiles with only strips**

- Granular layers are a main cost driver •
- Strip only
 - Different strip widths from 40 mm to 20 mm
- Energy resolution \bullet
 - As expected not much change compare to the baseline \bullet
- Angular resolution \bullet
 - Worse (~10 deg @ 50 MeV to ~few deg at GeVs) for large strip ${\bullet}$ widths
 - Can be "recovered" with smaller strip width (10-20 mm)
 - May be improved with shorter strips (length)
- However:
 - Impact on timing Impact on timing Impact on timing Impact on timing Impact for fiberless and more transparent scintillator (cost increase)
 - Effect on neutron detection and energy measurement?

A strong point of the MPD ECAL. Neutron energy measurement with background

- Neutron production is very uncertain in neutrino interactions \bullet
- LAr is limited due to secondary interactions \bullet
- GAr + ECAL can be powerful to measure neutrons via ToF \bullet
 - few 10-100s ps time resolution required
- Very detailed study done by Chris Marshall (<u>https://</u> \bullet indico.fnal.gov/event/20144/session/20/contribution/21/ material/slides/0.pdf)
- The ECAL optimization will take into account this \bullet
 - Thicker scintillator slab in the front of the ECAL to \bullet reduce the scattered neutrons

Time-assisted π^0 reconstruction. **Ongoing work**

- Previous results (Lorenz's master) showed that π^0 mass \bullet reconstruction (few %) and vertex position (~20-30 cm) is quite good with the ECAL
- Ongoing work to redo the study with the current framework \bullet including backgrounds
- Optimisation \bullet
 - "Time-assisted" π^0 reconstruction \bullet
 - Use of timing to improve the vertex position \bullet reconstruction
- Needs a bit of work on the software side \bullet

Muon/Pion separation in the ECAL. A must for a pure v_{μ} CC sample

- Baseline design
 - • • 1 lambda
- ECAL design can partially fulfil such role
 - Most pion/muons will range out below
 ~350-400 MeV/c (12 cm of Cu + 30 cm CH me)
 ~200 MeV)
 - High momentum mu/pi will punch-through the ECAL
 - More ECAL layers would increase the cut-off (80 layers in up to ~450-500 MeV/c)

Muon/Pion separation in the ECAL. A must for a pure v_{μ} CC sample

- Baseline design
 - • • 1 lambda
- ECAL design can partially fulfil such role
 - Most pion/muons will range out below
 ~350-400 MeV/c (12 cm of Cu + 30 cm CH me)
 ~200 MeV)
 - High momentum mu/pi will punch-through the ECAL
 - More ECAL layers would increase the cut-off (80 layers in up to ~450-500 MeV/c)
- v_µCC selection → Very high purity (>95%) with muon ID system (3 layers of 10 cm Iron)
- ECAL design needs to follow the muon system design (see later talk)

Impact of non-uniformities. Important test in a low-energy regime

- Goal
 - Study effects of tile non-uniformity, gaps between tiles and material distribution (ASIC) on the energy resolution
- Principal impact on the constant term, negligible on the stochastic term
 - ASIC has an impact of around 5% on the Eres
 - Tile alignment is the dominant effect, around 10% degradation
- Not a show stopper

Next steps. Further run of optimization/design

- Further optimize based on physics needs
 - Coverage muon angle, LAr/TPC matching..
 - Integration with the magnet/muon system
 - Neutrons/neutral pion performance
- Increase the reality of the detector
 - Improve the geometry
 - Services
 - Mechanical supports
 - Improve the digitization and reconstruction (software)

Page 17

Conclusions.

- The ECAL design (60 layers with 2 mm Cu/5 mm Sc) is the base for the CDR \bullet
- Optimisation of the ECAL is ongoing and will be guided by physics requirements
- Current observations
 - ECAL shape has a small influence (less leakage) \bullet
 - Using Pb will heavily degrade the angular resolution (optimize Pb layer thickness) \bullet
 - Granularity \bullet
 - \bullet
 - Neutrons \bullet
 - Optimisation taking account of this golden measurement ullet
 - Non uniformities is not a show stopper for the technology foreseen \bullet
- Ongoing work \bullet
 - π^0 reconstruction (incl. backgrounds), neutrons \bullet
 - Software \bullet
 - Realism in simulation (required for optimization) \bullet
 - Pandora integration for the reconstruction, similar as the FD
 - Small scale hardware, exploring strip options \bullet

Strip-only is an option but need to go to small width sizes (10-20 mm) and impact on neutrons to be understood

