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Outline

● Long-baseline oscillation fitting in DUNE
● Overview of analysis as implemented in FD TDR
● Challenges & limitations
● Looking to the future: new developments
● Opportunities for new groups
● Comments regarding computing
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The end result: sensitivities & 
parameter resolutions

● For three different 
exposures, the resolution 
on δCP as a function of its 
true value

● Band represents the 
impact of using the 
reactor θ13 constraint as a 
prior, which improves 
our δCP resolution, 
especially for shorter 
exposures
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How we get there
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Geant4-based flux prediction and 
full systematic uncertainties

● Simulation of meson production in proton-carbon interactions and full 
focusing system

● Meson production is tuned to external proton-carbon data, focusing 
uncertainties come from varying many systematic parameters in the model

● Full covariance matrix between energy bins of 4 neutrino species 
(νμ/νμ/νe/νe), 2 beam modes (FHC/RHC), 2 detector locations (near/far)
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Principal components of covariance 
matrix are used in analysis

● 208x208 matrix with 
only ~20 significant 
eigenvalues → use 
principal components

● Largest components 
match up with some 
of the largest hadron 
production and 
focusing uncertainties
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Cross section uncertainties
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Cross section uncertainties 
strategy

● Many reweightable uncertain parameters are 
implemented in GENIE, but these uncertainties are 
insufficient

● Add additional “knobs” based on a combination of 
data/generator comparisons, alternate theory models, 
etc.

● Critical to get this right, and lots of work to do → need 
additional effort in this area
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Example: uncertainty on “2- 
particle 2-hole” interactions

● MINERvA and NOvA 
see an enhancement in 
cross section that is 
consistent with multi-
nucleon 2p2h scattering, 
i.e. νμ(np) → μ-nn

● MINERvA can fit in 4 
different ways: as 1p1h, 
nn only, pp only, 2p2h

● Implemented parameter 
moves events between 
nn  → 2p2h → 1p1h 
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Detector uncertainties

● We implement uncertainties on
● Reconstructed energy scale
● Reconstructed energy resolution
● Detector acceptance corrections
● NC background rejection

● Currently included only for FD and LAr ND – need to 
develop model for uncertainties in HPgTPC, SAND, 
correlations between detectors
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Near detector uncertainties are 
described by covariance matrix

● FD uncertainties are 
implemented as nuisance 
parameters constrained 
in the fit

● This approach is difficult 
for ND because high 
statistics, lack of realism 
leads to overfitting

● Lots of work to be done 
in making ND model 
more realistic
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FD event selection with 
convolutional neural network

● CVN is trained on event images with known flavor
● Three wire readout planes in far detector → three 2-

dimensional “images” of each interaction

● νe CC event shown, electron-induced shower highlighted

Wire
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Far detector event selection: 
FHC νe CVN probability

Osc. CC electron

CC muon
CC tau

NC

Beam CC electron

● FHC event 
probabilities 
from CVN

● Cut at 0.85 for 
this analysis

● Selects 
oscillated and 
intrinsic 
electrons
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Far detector νe selection efficiency

● Full MC with CVN event 
selection (solid curve) is 
comparable to fast MC 
from CDR (dashed curve)

● 85-90% efficient in the 
region where most events 
are expected
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FHC selected event samples
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ND samples for TDR LBL analysis 
use an outdated geometry

LAr TPC
cryostat

ν beam HPG Ar
Pressure 

vessel

Magnet, ECal
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Current simulations use the 
updated geometry

● TDR: parameterized reconstruction of LAr samples 
using LAr + HPgTPC detectors

● Moving forward: full simulation+reconstruction, directly 
incorporate HPgTPC(+ECAL+μID) + SAND samples

ν 

R. Flight, Rochester



Chris Marshall18

TDR analysis ND samples: CC 
inclusive binned in 2D

FHC FHC

FHCFHC

RHC

RHCRHC
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TDR analysis was successful!

● Produced full suite of 
oscillation sensitivity results 
from an end-to-end analysis 
with full reconstructed FD 
samples, explicit ND 
constraints, and realistic 
systematics

● This was a ton of work and 
a huge accomplishment
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Limitations

● Uses a single ND sample – not practical to directly 
implement dozens of possible selected samples in LAr, 
GAr, 3DST

● Implicitly assumes that interaction and detector models 
are correct and describe the data, up to the included 
uncertainties – not the experience of every experiment 
ever

● Very difficult to describe shape uncertainties – most 
“knobs” have a very particular shape in some 
kinematic space, and with enough statistics the ND can 
“measure” the correct value
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How it works in experiments

● ND data will not be described by our model
● We will modify our model to describe the ND data in 

many different projections, and add systematic 
uncertainties for the many different ways this can be done
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Example: MK single pion

C. Wilkinson
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Bias studies with mock data

● Consider alternative MC “mock data” samples, and 
evaluate potential bias on analysis
● “NuWro mock data”, where a BDT is trained to generate 

event weights to make GENIE reproduce NuWro prediction 
in 18 kinematic quantities

● “Missing proton energy”, where 20% of proton energy is 
removed (i.e. converted to unobserved neutrons), and cross 
sections are adjusted so that on-axis hadronic energy 
spectrum is unchanged
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FD-only fits

● FD-only we 
get very 
good fit, 
with χ2 ~ 10

● No evidence 
of any 
problems 
with model
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FD-only nuisance parameter post-
fits are < 0.5σ of pre-fit values 
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ND+FD fit χ2 = 10879.2
● Post-fit parameter 

uncertainties are 
shown as red bands

● Parameters get pulled 
way outside their pre-
fit ranges, with tiny 
constraints

● Fit to ND data is 
terrible – we would 
definitely know there 
is a problem, although 
we do not yet show 
how we would fix it
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Sensitivities with bias applied
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Reweighting the CV prediction with 
HPgTPC data

● Derive Data/GENIE ratio for different reconstructed samples by 
number of pions

● Applying this to the a priori MC prediction improves the result
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Missing proton mock data

FHC νμ RHC νμ 

FHC νe RHC νe 
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Missing proton bias

● Best-fit gives significant bias to Δm2 and θ23, several 
sigma outside uncertainties

● Additional 
uncertainty would be 
required to cover the 
bias

● Effect is easily 
detected with off-axis 
ND data
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New thread: Markov Chain MC
● Ongoing work on Bayesian analysis using Stan, with 

initial results looking very promising
● Another similar effort on using Mach3 package 

developed in T2K
● This approach scales much better as fits become more 

complicated
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Near-term & Longer-term plans

● Near-term: Near detector IDR & TDR (now-2021)
● Continue to explore ND constraints with mock data

● Longer-term: 
● Incorporate fully-reconstructed ND samples
● Include additional LAr, HPgTPC, SAND constraints
● Pursue alternate analysis approaches, such as MCMC
● Other ideas?
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Backups
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GENIE ReWeight
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VecFFCCQEshape
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Theta_Delta2Npi
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NR_nu_p_CC_3Pi
NR_nu_np_CC_1Pi
NR_nu_n_NC_1Pi
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NR_nubar_n_NC_3Pi
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GENIE reweight parameters affecting 
CC quasi-elastic
CC resonance production
CC deep inelastic scattering
Final-state interactions
Neutral currents
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DUNEint not covered in GENIE

Mnv2p2hGaussEnhancement
MKSPP_ReWeight
E2p2h_A_nu
E2p2h_B_nu
E2p2h_A_nubar
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nuenumu_xsec_ratio
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Additional parameters:
CC QE
CC Resonance
2p2h
Scaling C→Ar
νe/νμ or νe/νe



Chris Marshall36

DUNEint not covered in GENIE
NR_nu_n_CC_2Pi
NR_nu_n_CC_3Pi
NR_nu_p_CC_2Pi
NR_nu_p_CC_3Pi
NR_nu_np_CC_1Pi
NR_nu_n_NC_1Pi
NR_nu_n_NC_2Pi
NR_nu_n_NC_3Pi
NR_nu_p_NC_1Pi
NR_nu_p_NC_2Pi
NR_nu_p_NC_3Pi
NR_nubar_n_CC_1Pi
NR_nubar_n_CC_2Pi
NR_nubar_n_CC_3Pi
NR_nubar_p_CC_1Pi
NR_nubar_p_CC_2Pi
NR_nubar_p_CC_3Pi
NR_nubar_n_NC_1Pi
NR_nubar_n_NC_2Pi
NR_nubar_n_NC_3Pi
NR_nubar_p_NC_1Pi
NR_nubar_p_NC_2Pi
NR_nubar_p_NC_3Pi

Additional parameters affecting 
non-resonant pion production
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Example energy scale uncertainty: 
charged hadron response

● Each curve represents 
the energy response 
bias in a particular 
universe, where the 
parameters have been 
chosen randomly 
consistent with the 
energy-dependent 
uncertainty
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ND CC νμ acceptance 
fractional uncertainty

● CC events are rejected when
● Muon is reconstructed as π± (low 

energy)
● Muon exits sides
● Muon exits downstream but does 

not enter gas TPC

● Acceptance is sensitive to 
detector modeling in phase space 
where muon acceptance is 
rapidly changing

● Uncertainty is evaluated as a 
function of muon momentum in 
transverse and neutrino direction 
(equivalently, energy and angle)
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The actual matrix, in the analysis 2D 
binning

● The ND binning in 
the fit is two-
dimensional in Eν and 
y, so the full 
covariance matrix 
includes this full 
binning
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Additional LAr sample:
ν+e scattering

● Pure EW process with known cross section → sensitive to flux only

● Signal is subject to kinematic constraint Eeθe
2 < 2me

● Dominant background is νe CC at low Q2

● Signal and background samples are ready, but have yet to be included 
in fit

Signal ν+e νe CC NC π0
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