DEEP UNDERGROUND NEUTRINO EXPERIMENT

Long-baseline physics analysis: Overview, status, future

Chris Marshall Lawrence Berkeley National Laboratory TIFR workshop 28 February, 2020

Outline

- Long-baseline oscillation fitting in DUNE
- Overview of analysis as implemented in FD TDR
- Challenges & limitations
- Looking to the future: new developments
- Opportunities for new groups
- Comments regarding computing

The end result: sensitivities & parameter resolutions

- For three different exposures, the resolution on δ_{CP} as a function of its true value
- Band represents the impact of using the reactor θ₁₃ constraint as a prior, which improves our δ_{CP} resolution, especially for shorter exposures

How we get there

4

Geant4-based flux prediction and full systematic uncertainties

- Simulation of meson production in proton-carbon interactions and full focusing system
- Meson production is tuned to external proton-carbon data, focusing uncertainties come from varying many systematic parameters in the model
- Full covariance matrix between energy bins of 4 neutrino species $(v_{\mu}/\bar{v}_{\mu}/v_{e}/\bar{v}_{e})$, 2 beam modes (FHC/RHC), 2 detector locations (near/far)

Principal components of covariance matrix are used in analysis

- 208x208 matrix with only ~20 significant eigenvalues → use principal components
- Largest components match up with some of the largest hadron production and focusing uncertainties

.....

Cross section uncertainties

MaCCQE VecFFCCQEshape **CCQEPauliSupViaKF** MaNCEL. **MaCCRES MvCCRES MaNCRES MvNCRES** Theta_Delta2Npi AhtBY **BhtBY** CV1uBY CV2uBY FrCEx_pi FrElas_pi FrInel_pi FrAbs_pi FrPiProd_pi FrCEx N FrElas N FrInel N FrAbs_N FrPiProd N

Mnv2p2hGaussEnhancement MKSPP_ReWeight E2p2h_A_nu E2p2h_B_nu E2p2h_A_nubar E2p2h_B_nubar BeRPA_A BeRPA_B BeRPA_D C12ToAr40_2p2hScaling_nu C12ToAr40_2p2hScaling_nubar nuenuebar_xsec_ratio nuenumu_xsec_ratio SPPLowQ2Suppression NR_nu_n_CC_2Pi NR_nu_n_CC_3Pi NR_nu_p_CC_2Pi NR_nu_p_CC_3Pi NR_nu_np_CC_1Pi NR nu n NC 1Pi NR nu n NC 2Pi NR nu n NC 3Pi NR_nu_p_NC_1Pi NR_nu_p_NC_2Pi NR_nu_p_NC_3Pi NR_nubar_n_CC_1Pi NR nubar n CC 2Pi NR_nubar_n_CC_3Pi NR_nubar_p_CC_1Pi NR_nubar_p_CC_2Pi NR_nubar_p_CC_3Pi NR_nubar_n_NC_1Pi NR nubar n NC 2Pi NR_nubar_n_NC_3Pi NR_nubar_p_NC_1Pi NR_nubar_p_NC_2Pi NR_nubar_p_NC_3Pi

NATIONAL LABORATORY

BERKEL

.....

Cross section uncertainties strategy

- Many reweightable uncertain parameters are implemented in GENIE, but these uncertainties are insufficient
- Add additional "knobs" based on a combination of data/generator comparisons, alternate theory models, etc.
- Critical to get this right, and lots of work to do → need additional effort in this area

Example: uncertainty on "2particle 2-hole" interactions

- MINERvA and NOvA see an enhancement in cross section that is consistent with multinucleon 2p2h scattering, i.e. $v_{\mu}(np) \rightarrow \mu$ -nn
- MINERvA can fit in 4 different ways: as 1p1h, nn only, pp only, 2p2h
- Implemented parameter moves events between $nn \rightarrow 2p2h \rightarrow 1p1h$

Detector uncertainties

- We implement uncertainties on
 - Reconstructed energy scale
 - Reconstructed energy resolution
 - Detector acceptance corrections
 - NC background rejection
- Currently included only for FD and LAr ND need to develop model for uncertainties in HPgTPC, SAND, correlations between detectors

Near detector uncertainties are described by covariance matrix

- FD uncertainties are implemented as nuisance parameters constrained in the fit
- This approach is difficult
 for ND because high
 statistics, lack of realism
 leads to overfitting
 - Lots of work to be done in making ND model more realistic

.....

FD event selection with convolutional neural network

- CVN is trained on event images with known flavor
- Three wire readout planes in far detector → three 2dimensional "images" of each interaction
- v_e CC event shown, electron-induced shower highlighted

Far detector event selection: FHC v_e CVN probability

Far detector v_e selection efficiency

Appearance Efficiency (FHC)

- Full MC with CVN event selection (solid curve) is comparable to fast MC from CDR (dashed curve)
- 85-90% efficient in the region where most events are expected

FHC selected event samples

.....

Current simulations use the updated geometry

- TDR: parameterized reconstruction of LAr samples using LAr + HPgTPC detectors
- Moving forward: full simulation+reconstruction, directly incorporate HPgTPC(+ECAL+µID) + SAND samples

TDR analysis ND samples: CC inclusive binned in 2D

TDR analysis was successful!

- Produced full suite of oscillation sensitivity results from an end-to-end analysis with full reconstructed FD samples, explicit ND constraints, and realistic systematics
- This was a ton of work and a huge accomplishment

Limitations

- Uses a single ND sample not practical to directly implement dozens of possible selected samples in LAr, GAr, 3DST
- Implicitly assumes that interaction and detector models are correct and describe the data, up to the included uncertainties not the experience of every experiment ever
- Very difficult to describe shape uncertainties most "knobs" have a very particular shape in some kinematic space, and with enough statistics the ND can "measure" the correct value

How it works in experiments

- ND data will **not** be described by our model
- We will modify our model to describe the ND data in many different projections, and add systematic uncertainties for the many different ways this can be done

BERKELEY NATIONAL LABORATOR

Example: MK single pion

Easy to see why this on/off dial (MK SPP reweight) is simply resolved by the ND... it simply knows whether it's on or off.

rerere

NATIONAL LABORATOR

Bias studies with mock data

- Consider alternative MC "mock data" samples, and evaluate potential bias on analysis
 - "NuWro mock data", where a BDT is trained to generate event weights to make GENIE reproduce NuWro prediction in 18 kinematic quantities
 - "Missing proton energy", where 20% of proton energy is removed (i.e. converted to unobserved neutrons), and cross sections are adjusted so that on-axis hadronic energy spectrum is unchanged

FD-only fits

.....

AB

NATIONAL LABORATOR

FD-only nuisance parameter postfits are < 0.5σ of pre-fit values

 $\delta = 0.33\pi$

ND+FD fit $\chi^2 = 10879.2$

- Post-fit parameter uncertainties are shown as red bands
- Parameters get pulled way outside their prefit ranges, with tiny constraints
- Fit to ND data is terrible – we would definitely know there is a problem, although we do not yet show how we would fix it

26

BERKELEY NATIONAL LABORATORY

mm

Sensitivities with bias applied

CP Violation Sensitivity

Reweighting the CV prediction with HPgTPC data

- Derive Data/GENIE ratio for different reconstructed samples by number of pions
- Applying this to the *a priori* MC prediction improves the result

28

Missing proton mock data

Chris Marshall

Missing proton bias

• Best-fit gives significant bias to Δm^2 and θ_{23} , several sigma outside uncertainties

- Additional uncertainty would be required to cover the bias
- Effect is easily detected with off-axis ND data

.....

New thread: Markov Chain MC

- Ongoing work on Bayesian analysis using Stan, with initial results looking very promising
- Another similar effort on using Mach3 package developed in T2K
- This approach scales much better as fits become more complicated

Near-term & Longer-term plans

- Near-term: Near detector IDR & TDR (now-2021)
 - Continue to explore ND constraints with mock data
- Longer-term:
 - Incorporate fully-reconstructed ND samples
 - Include additional LAr, HPgTPC, SAND constraints
 - Pursue alternate analysis approaches, such as MCMC
 - Other ideas?

GENIE ReWeight

MaCCQE VecFFCCQEshape **CCQEPauliSupViaKF** MaNCEL. **MaCCRES MvCCRES MaNCRES MvNCRES** Theta_Delta2Npi AhtBY BhtBY CV1₁₁BY CV211BY FrCEx_pi FrElas_pi FrInel_pi FrAbs_pi FrPiProd_pi FrCEx N FrElas_N FrInel N FrAbs_N FrPiProd N

GENIE reweight parameters affecting CC quasi-elastic CC resonance production CC deep inelastic scattering Final-state interactions Neutral currents

DUNEint not covered in GENIE

Additional parameters:

CC QE CC Resonance 2p2h Scaling $C \rightarrow Ar$ v_e/v_μ or v_e/v_e

Mnv2p2hGaussEnhancement MKSPP_ReWeight E2p2h_A_nu E2p2h_B_nu E2p2h_A_nubar E2p2h_B_nubar BeRPA_B BeRPA_B BeRPA_D C12ToAr40_2p2hScaling_nu C12ToAr40_2p2hScaling_nubar nuenuebar_xsec_ratio nuenumu_xsec_ratio SPPLowQ2Suppression

DUNEint not covered in GENIE

Additional parameters affecting non-resonant pion production

NR_nu_n_CC_2Pi NR nu n CC 3Pi NR_nu_p_CC_2Pi NR_nu_p_CC_3Pi NR_nu_np_CC_1Pi NR_nu_n_NC_1Pi NR_nu_n_NC_2Pi NR nu n NC 3Pi NR_nu_p_NC_1Pi NR_nu_p_NC_2Pi NR_nu_p_NC_3Pi NR_nubar_n_CC_1Pi NR nubar n CC 2Pi NR_nubar_n_CC_3Pi NR_nubar_p_CC_1Pi NR_nubar_p_CC_2Pi NR_nubar_p_CC_3Pi NR_nubar_n_NC_1Pi NR_nubar_n_NC_2Pi NR_nubar_n_NC_3Pi NR_nubar_p_NC_1Pi NR_nubar_p_NC_2Pi NR_nubar_p_NC_3Pi

NATIONAL LABORATOR

36

Example energy scale uncertainty: charged hadron response

• Each curve represents the energy response bias in a particular universe, where the parameters have been chosen randomly consistent with the energy-dependent uncertainty

ND CC v_{μ} acceptance fractional uncertainty

- CC events are rejected when
 - Muon is reconstructed as π[±] (low energy)
 - Muon exits sides
 - Muon exits downstream but does not enter gas TPC
- 0.15 Acceptance is sensitive to detector modeling in phase space
 0.1 where muon acceptance is rapidly changing
 - Uncertainty is evaluated as a function of muon momentum in transverse and neutrino direction (equivalently, energy and angle)

38

The actual matrix, in the analysis 2D binning

 The ND binning in the fit is twodimensional in E_v and y, so the full covariance matrix includes this full binning

Chris Marshall

39

Additional LAr sample: v+e scattering

- Pure EW process with known cross section → sensitive to flux only
- Signal is subject to kinematic constraint $E_e \theta_e^2 < 2m_e$
- Dominant background is v_e CC at low Q²
- Signal and background samples are ready, but have yet to be included in fit