MPD µID physics requirements

Chris Marshall Lawrence Berkeley National Laboratory TIFR ND workshop 28 February, 2020

PID in HPgTPC

Chris Marshall

- Measure momentum from curvature
- Measure dE/dx from ionization
- Nice π/K/p separation out to ~1 GeV/c
- But no π/μ separation above ~0.2 GeV/c

MPD muon identification

- 60 layers ECAL (2mm Cu + 5mm CH) will range out a ~270 MeV (KE) muon or pion
- ECAL is ~1 pion collision length → ~2/3 of pions will scatter
- But ~1/3 of pions will track through ECAL and look like muons
- Instrumenting an iron return yoke could serve as µID

3

Solenoid with partial return yoke

- Magnetic flux return yoke is cut out in ±60° region to facilitate muon tracking into the HPgTPC
- Downstream side of yoke could be instrumented to measure muons
- Don't need momentum resolution, just μ/π separation

Pion interactions in the ECAL

- Below ~300 MeV/c: pions range out in ECAL, are less likely to interact when expected range is short
- ~300 MeV/c: resonance in pion scattering cross section, very high probability to scatter
- High momentum: entire ECAL traversed by pion above resonance region, plateaus at ~1.2 pion collision lengths

- Pion interactions will produce wider energy distribution in the active regions, even if individual products can't be measured
- 3 total interaction lengths gives ~95% pion rejection

6

ECAL stoppers can be selected by range & momentum

• Muons and pions of the same momentum have different kinetic energy and different range in ECAL, even for tracks that range out

NATIONAL LABORATOR

ECAL stoppers can be selected by range & momentum

 There is basically zero overlap in ECAL traversed layers for muons and pions, up to where the pions start going all the way through, which is ~380 MeV/c

This study

- Simulate neutrino interactions on Argon with GENIE
- Try to find the muon:
 - Select the highest-momentum right-sign μ or π track from HPgTPC (can't distinguish μ/π)
 - Determine if it interacts in the ECAL or μ ID system
 - If it does, then reject it as a pion, and proceed to the next track
- Goal: select high-purity charged-current samples underlying pion and muon spectra set the bar for what rejection fraction is required
- Initial assumption for μ ID is 3 layers of 10cm steel

FHC CC v_{μ} selection (μ^{-}/π^{-})

- Raw = select the highestmomentum muon/pion track no matter what
- ECAL = Select the highest-momentum track that does not interact in the ECAL
- µID = Select the highest-momentum track that does not interact in the ECAL or µID

FHC CC v_{μ} purity (μ^{-}/π^{-})

- With no reduction, purity reaches ~90% at high momentum
- With ECAL only (no μID) gets to ~96%
- With $\mu ID \rightarrow 100\%$

mm

 In region where tracks stop in µID (500-1000 MeV/c) purity is 94-100%

FHC CC v_{μ} purity (μ^{-}/π^{-})

- Including the near-perfect selection by range for ECAL stoppers
- Dip region in purity is where pions go through the ECAL and stop in the first µID layers
- 80-layer ECAL would increase the cutoff from 380
 → 480 MeV/c
- More granular µID would smooth the rise between 380 and 1000

.....

RHC CC $\bar{\nu}_{\mu}$ selection (μ^{+}/π^{+})

- RHC antineutrinos produce somewhat higher energy muons on average
- Pion background is worse due to larger wrong-sign NC contribution

RHC CC $\bar{\nu}_{\mu}$ purity (μ^{+}/π^{+})

- Dip is worse purity around 500 MeV/c muon is only ~80%
- But still reaches nearly 100% purity by 800 MeV/c

ATIONAL LABORATOR

mm

µID thickness requirement

• Assuming three identical layers, with total thickness of 10, 20, or 30 cm

rrrrr

 ~15 cm total gives >99% purity for CC selection in both FHC and RHC modes

RHC CC $ν_{\mu}$ selection (μ^{-}/π^{-}) (wrong sign)

- Very low wrong sign contamination in the flux peak makes selecting wrong-sing sample challenging
- Not clear if this is needed at low energy
- Very clean at high energy with µID

RHC CC ν_μ purity (μ⁻/π⁻) (wrong sign)

- For muons above 1 GeV/c the purity is >95% for the wrongsign selection
- µID is necessary to achieve purity above ~80%

.....

FHC CC $\bar{\nu}_{\mu}$ selection (μ^{+}/π^{+}) (wrong sign)

- Harder still is wrong sign events in FHC
- Huge background from pions at low momentum

FHC CC $\bar{\nu}_{\mu}$ purity (μ^{+}/π^{+}) (wrong sign)

rrrrr

 Purity is terrible without µID, still only ~70-90% due to very low wrong sign contamination in FHC beam

Directionality (FHC right sign)

- Highest-momentum track is very rarely backward, and when it is the momentum is <500 MeV/c
- µID does almost nothing in backward sector because almost everything ranges out in the ECAL

Directionality (FHC right sign)

• High-angle tracks go up to ~1 GeV/c, but most pions are still soft enough to range out in ECAL

Directionality (RHC right sign)

- There are very few backscattered muons in antineutrino interactions
- Almost all of them could be identified in the ECAL

Directionality (RHC right sign)

- High angle antineutrino tracks are mostly pions
- Here there is less signal than in FHC, and some improvement is obtained by including a high-angle μID

Conclusions

- Muons and pions stopping in ECAL can be separated by range with nearly 100% efficiency
- µID is required to get right-sign CC purity above 95%
- 15cm iron is required to give CC purity >99%
- In the region where tracks stop in the μID passive layers, the purity is somewhat worse
- Wrong-sign CC selection is very challenging due to large NC pion backgrounds, and even a very capable µID system will not reject all the background

