

Design options for DUNE Near Detector Magnet

Udai Giri P.S Sachan, S.Sundar Rajan, Sanjay Malhotra Bhabha Atomic Research Centre India

Outline

- Superconducting Solenoid detectors presently in operation
- DUNE ND Magnet Location & Hall layout
- Detector magnet requirements
- DUNE Magnet Design Options
 - Option 1: Five Coil Helmholtz Design
 - Option 2: Three Coil Helmholtz Design
 - Option 3: Three Coil Helmholtz Design with return yoke
 - Option 4: Two Coil Helmholtz Design
- Summary

Superconducting Solenoid detectors presently in operation

कि सेवा में परमान
है भा प अ कें
3 BARC

Magnet	Central B (T)	Bore ID (m)	Magnet L (m)	Matrix Material	Coil Location	Thickness (Rad. Len.)	Magnet E (MJ)	S/C J (A mm ⁻¹)	Cooling Type
CLEO-1	1.5	2.0	3.7	Cu	Outside	0.7	10.0	~350	Forced
PEP-4	1.5	2.04	3.84	Cu	Outside	0.85	10.9	645	Forced
CELLO	1.3	1.5	4.02	Al	Outside	0.6	5.0	?	Forced
CDF	1.5	2.85	5.4	AI	Inside	0.84	30	64	Forced
TOPAZ	1.2	2.72	5.4	AI	Inside	0.7	20	56	Forced
VENUS	0.75	3.4	5.6	Al	Inside	0.52	12.0	?	Forced
ALEPH	1.5	4.96	7.0	Al	Inside	1.6	136	30.8	Natural
AMY	3.0	2.39	2.11	Al	Outside	> 2	40	50	Pool
ZEUS	1.8	1.72	2.9	A1	Inside	>2	16	?	Forced
DELPI	1.2	5.2	7.4	AI	Inside	1.7	108	46.3	Forced
H-1	1.2	5.2	6.0	AI	Inside	1.8	130	46	Forced
CLEO-2	1.5	2.9	3.8	Al	Inside	2.2	25	41.3	Natural
BaBar	1.5	2.76	3.85	Al	Inside	< 1.4	23	37 & 67	Natural
BEPCH	1.0	3.89	3.4	AI	Inside	~ 0.8	9.5	44.8?	Forced
ATLAS	2.0	2.4	5.3	Al	Inside	0.66	39	59.6	Forced
CMS	4.0	6.0	12.5	Al	Inside	4.3	2700	14.1	Forced

DELPHI Solenoid Magnet

- Due to limited radiation lengths, most of the detector magnets are thin solenoid magnets.
- CLEO-1 and PEP-4 uses Cu-NbTi cable in a copper channel whereas all other detector uses Cu-NbTi cable in an Aluminum channel
- Ultrapure Aluminum matrix (RRR> 1000) increases quench velocity at higher currents and minimum propagation zone is also longer.

CMS Solenoid Magnet Detector

DUNE Near Detector Magnet Location

LBNF sends broadband intense beam of neutrinos 1280 Km from FNAL to the DUNE Far Detector at SURF in South Dakota * Courtesy: Fermi lab Technical Documents

DUNE Near Detector Hall Layout

* Courtsey: Fermi lab Technical Documents

DUNE Near Detector Discussion Meeting : Magnet Systems

DUNE Near Detector Magnet Design

Requirements:*

- Multi coil design due to finite radiation length (Copper: 3.5 mm, Aluminum: 88.9 mm, NbTi: 20.4 mm) and ease of assembly
- <u>Central Magnetic Field</u>: B(0,0,0) ~ 0.5T
- <u>Magnet Inner Diameter:</u> > 6 m
- <u>Magnet Outer Diameter: < 8.8</u> m
- Magnet Length: less than 12 m
- <u>Fringe Field</u>:B(6,0,0) < 200 Gauss (20mT)
- <u>Uniformity</u> :< 50% in DSV of 5.2 m

* DUNE-ND magnet meetings

Design Option-1: Three coil Helmholtz Configuration with shield coils

DUNE Near Detector Discussion Meeting : Magnet Systems

Design Option-1: Three coil Helmholtz Configuration with shield coils

Design Option-01 Field Uniformity

Design Option-01: Stray Magnetic Field

Design Option-01: Peak Magnetic Field

11 February 27-29, 2020

DUNE Near Detector Discussion Meeting : Magnet Systems

Design Option-2: Three coil Helmholtz Configuration

R	S. No:	Parameters	Descripti on		
	1	Distance between Centre coil & side coil	2.9 m		
	2	Coil Inner diameter	7.4 m		
	3	No of turns (main coil)	240		
	4	No of turns (side coil)	776		
	5	Current	3000 Amp		

Design Option2- Magnetic Field

क्त सेवा में मुह्

DUNE Near Detector Discussion Meeting : Magnet Systems

Design Option 2- Magnetic Field Uniformity

B(0,0,0)=0.5 T

 $B_{uniformity}$ = 16% In a DSV of 5.2 m

14 February 27-29, 2020 DUNE Near Detector Discussion Meeting : Magnet Systems

Design Option 2- Peak Magnetic Field

Design Option 2- Stray Magnetic Field

B(0,0,12)=200 Gauss

Design Option-3: Three coil Helmholtz Configuration with Return Yoke

Design Option 3- Magnetic Field

DUNE Near Detector Discussion Meeting : Magnet Systems

Design Option 3- Magnetic Field Uniformity

B(0,0,0)=0.5 T

Design Option 3- Peak Magnetic Field

Design Option 3- Stray Magnetic Field

Design Option-4: Two coil Helmholtz Configuration

Description

5.4 m

7.7 m

3600 Amp

720

22 February 27-29, 2020 DUNE Near Detector Discussion Meeting : Magnet Systems

Field Uniformity Configuration-04

B(0,0,0)=0.45 T

B_{uniformity}= 37% In a DSV of 4.5 m

Design Option 4- Magnetic Field

24 February 27-29, 2020 DUNE Near Detector Discussion Meeting : Magnet Systems

Design Option 4- Peak Magnetic Field

Magnet Design Options comparison

Magnet Parameters	Five Coil Design		Three Coil Design		Three coil design with Return Yoke		Two coil Design	
Magnet ID (m)	7	7	8.2	7.2	7.2	7.2	7.2	7.7
Length(m)	0.085	0.2	0.1	0.4	1	0.4	1	0.9
Number of turns	112	48 1	250	240	776	240	776	720
Number of layers	7	13	14	3	4	3	4	4
Length of cable (km)	38		23		23		20	
Operating current(A)	5000		3000		2500		3600	
B _{peak} (T)	4.7		1.92		1.34		2.2	
Overall Magnet Length(m)	10		7.8		13		5.4	
B _{stray} 200 Gauss		2100 Gauss		100 Gauss		1800 Gauss		
Uniformity	Uniformity 17 %		16 %		22 %		37%	

What is next ?

- Optimization of three coil design with backing iron to reduce the magnet size.
- Mechanical Design & cryogenic heat load estimation of the magnet has to be carried out

Thank you

28 04-Sep-19 DUNE Near Detector Discussion Meeting : Magnet Systems