"Design \& Analysis of Pressure Vessel for HPgTPC Detector"

DUNE TIFR Near Detector Workshop : $27^{\text {th }}-29^{\text {th }}$ FEB-2020

Prashant Kumar, Vikas Teotia, Sanjay Malhotra

Bhabha Atomic Research Centre, Trombay, India

Outline of Presentation

- Introduction and Overall System Layout
- HPgTPC Pressure Vessel Nomenclature
- Material Selection \& Corresponding Allowable S (ASME, Section II, Part D) for PV Materials
- Maximum Allowable Stress for AL 5083 Series
- HPgTPC Pressure Vessel's components design:
- Shell Thickness Calculation
- Design of Elliptical Head (Appendix 1, ASME Section VIII, Div 1)
- Reinforcement Calculation for Manhole opening in Ellipsoidal Head (UG-37)
- Bolted Flange Design for Shell and Head as per ASME Section VIII Division 1 / Appendix 2
- Stresses in Vessel supported on Two Saddles: Zick Analysis (ASME Section VIII, Div 2)
- Design of Weldments
- 3D FEM Analysis for HPgTPC Pressure Vessel with distributed mass (300 Ton, ECAL)
- Future Work

Introduction and Overall System Layout

HPgTPC Pressure Vessel Nomenclature

HPgTPC Pressure Vessel's components Design

- Design Inputs
- Cylindrical Shell Thickness Calculation
- Design of Elliptical Head (Appendix 1, ASME Section VIII, Div 1)
- Reinforcement Calculation for Manhole opening in Ellipsoidal Head (UG-37)
- Bolted Flange Design for Shell and Head as per ASME Section VIII Division 1 / Appendix 2
- Stresses in Vessel supported on Two Saddles: Zick Analysis (ASME Section VIII, Div 2)
- Design of Weldments
- 3D FEM Analysis for HPgTPC Pressure Vessel with distributed mass (300 Ton, ECAL)
- Summary \& future work

HPgTPC Pressure Vessel's components Design (Continue...)

Design Inputs

S N	Parameters	Values
01	Internal Working Pressure	$10 \mathrm{bar}(1 \mathrm{MPa})$
02	Design pressure (P)* (Adding minimum 5\% to 10\% to the Maximum Working Pressure)	1.05 MPa
03	Hydrostatic Pressure	1.3 * Design Pressure
04	ID of Shell	5725 mm
05	Length of cylindrical Shell	5192 mm
06	Material of Construction	Al 5083
07	Electromagnetic Calorimeter (As an external weight)	300 Ton
08	Maximum Allowable Stress (S)	86.9 MPa
09	Joint efficiency (E)	1.00
10	Design Temperature	Room Temp

* Design pressure (P) is chosen 5% higher (lower side of margin), so that it will not affect radiation length criteria

HPgTPC Pressure Vessel's components Design (Continue...)

- Design Inputs
- Cylindrical Shell Thickness Calculation
- Design of Elliptical Head (Appendix 1, ASME Section VIII, Div 1)
- Reinforcement Calculation for Manhole opening in Ellipsoidal Head (UG-37)
- Bolted Flange Design for Shell and Head as per ASME Section VIII Division 1 / Appendix 2
- Stresses in Vessel supported on Two Saddles: Zick Analysis (ASME Section VIII, Div 2)
- Design of Weldments
- 3D FEM Analysis for HPgTPC Pressure Vessel with distributed mass (300 Ton, ECAL)
- Summary \& future work

HPgTPC Pressure Vessel's components Design (Continue...)

Cylindrical Shell Thickness Calculation

(1) Circumferential Stress (Longitudinal Joints)

When the thickness does not exceed one-half of the inside radius, or P does not exceed $0.385 S E$, the following formulas shall apply:

$$
t=\frac{P_{i} D_{i}}{2 \mathrm{SE}-1.2 P_{i}}=\frac{1.05(M P a) * 5725 \mathrm{~mm}}{2 * 80.7 * 1(M P a)-1.2 * 1.05(M P a)}=37.54=\mathbf{3 8} \mathbf{~ m m}
$$

(2) Longitudinal Stress (Circumferential Joints)

When the thickness does not exceed one-half of the inside radius, or P does not exceed 1.25SE, the following formulas shall apply:

$$
\mathrm{t}=\frac{\mathrm{P}_{\mathrm{i}} \mathrm{D}_{\mathrm{i}}}{4 \mathrm{SE}+0.8 \mathrm{P}_{\mathrm{i}}}=\frac{1.05 * 5725}{4 * 80.7 * 1+0.8 * 1.05}=18.6 \approx 19 \mathrm{~mm}
$$

Therefore, Minimum shell thickness: 38 mm

Shell thickness: $\mathbf{4 2} \mathbf{~ m m}$

HPgTPC Pressure Vessel's components Design (Continue...)

- Design Inputs
- Cylindrical Shell Thickness Calculation
- Design of Elliptical Head (Appendix 1, ASME Section VIII, Div 1)
- Reinforcement Calculation for Manhole opening in Ellipsoidal Head (UG-37)
- Bolted Flange Design for Shell and Head as per ASME Section VIII Division 1 / Appendix 2
- Stresses in Vessel supported on Two Saddles: Zick Analysis (ASME Section VIII, Div 2)
- Design of Weldments
- 3D FEM Analysis for HPgTPC Pressure Vessel with distributed mass (300 Ton, ECAL)
- Summary \& future work

HPgTPC Pressure Vessel's components Design

Design of Elliptical Head (Appendix 1, ASME Section VIII, Div 1)

$$
\mathrm{t}=\frac{\mathrm{PDK}}{2 \mathrm{SE}-0.2 \mathrm{P}} \quad K=\frac{1}{6}\left[2+\left(\frac{D}{2 h}\right)^{2}\right]
$$

$$
K=0.66
$$

Minimum thickness required $=26 \mathrm{~mm}$
Specified Thickness: $\mathbf{3 0} \mathbf{~ m m}$
Crown radius $=\mathrm{K} * \mathrm{D}=0.67 * 5725=3779 \mathrm{~mm}$

S. N	Stresses	Calcula ted Values	Allowable Values	Re mar ks
$\mathbf{1}$	$\sigma_{\mathrm{L}}=\sigma_{\mathrm{h}}$ (At Crown)	70 MPa	80.7 MPa	Pass
2	At Equat or	σ_{L}	50 MPa	80.7 MPa

S.	Description	Value
$\mathbf{1}$	Design Pressure (P)	$10.5 \mathrm{bar}(1.05 \mathrm{MPa})$
$\mathbf{2}$	D	5725 mm
$\mathbf{3}$	K	0.66
$\mathbf{4}$	S (AL 5083)	80.7 MPa
$\mathbf{5}$	E as per UW-12	1.00

Material Selection \& Corresponding Allowable Stress

(ASME, Section II, Part D)

Applicability and Max. Temperature

Limits
(NP = Not Permitted)

Line No.	Size/Thickness, mm	P-No.	Min. Ten- sile Strength, MPa	Min. Yield Strength, MPa	(NP = Not Permitted) (SPT = Supports Only)				External Pressure Chart No.	Notes
					1	III	VIII-1	XII		
31	1.30-38.10	25	275	125	NP	66 (Cl. 3 only)	66	66	NFA-11	G18, G19
32	38.11-76.20	25	270	120	NP	66 (Cl. 3 only)	66	66	NFA-11	G18, G19
33	76.21-127.00	25	260	110	NP	66 (Cl. 3 only)	66	66	NFA-11	G18, G19
34	127.01-177.80	25	255	100	NP	66 (CL. 3 only)	66	66	NFA-11	G18, G19
35	177.81-203.2	25	250	97	NP	66 (Cl. 3 only)	66	66	NFA-11	G18, G19
36	6.35-38.10	25	275	125	NP	66 (Cl. 3 only)	66	66	NFA-11	G18, G19, W3
37	38.11-76.20	25	270	120	NP	66 (Cl. 3 only)	66	66	NFA-11	G18, G19, W3
38	4.78-38.10	25	305	215	NP	66 (Cl. 3 only)	66	66	NFA-11	G18, G19, W3
39	38.11-76.20	25	285	200	NP	66 (Cl. 3 only)	66	66	NFA-11	G18, G19, W3

Maximum Allowable Stress, MPa (Multiply by 1000 to Obtain kPa), for Metal Temperature, ${ }^{\circ} \mathrm{C}$, Not Exceeding

$\begin{aligned} & \text { Line } \\ & \text { No. } \\ & \hline \end{aligned}$	$\begin{gathered} \hline-30 \\ \text { to } \\ 40 \\ \hline \end{gathered}$	65	100	125	150	175	200	225	250	275	300	325	350	375	400	425
31	78.6	78.6-	..-	.--								
32	76.5	76.5	\cdots	\cdots-								
33	73.8	73.8	-.								
34	68.9	68.9	--								
35	64.1	64.1-	..-	..-	..-	--								
36	78.6	78.6-	..-	..---								
37	76.5	76.5-	...	--								
38	86.9	86.9	.-.-	..-	...	--								
39	80.7	80.7--								

HPgTPC Pressure Vessel's components Design (Continue...)

- Design Inputs
- Cylindrical Shell Thickness Calculation
- Design of Elliptical Head (Appendix 1, ASME Section VIII, Div 1)
- Reinforcement Calculation for Manhole opening in Ellipsoidal Head (As per UG 37)
- Bolted Flange Design for Shell and Head as per ASME Section VIII Division 1 / Appendix 2
- Stresses in Vessel supported on Two Saddles: Zick Analysis (ASME Section VIII, Div 2)
- Design of Weldments
- 3D FEM Analysis for HPgTPC Pressure Vessel with distributed mass (300 Ton, ECAL)
- Summary \& future work

Reinforcement for Manhole in Ellipsoidal Head (UG 37)

Dp: 2000 mm
d : 1000 mm
$\mathrm{t}: 42 \mathrm{~mm}$
tr : 20 mm
te: 12 mm
Area removed $=20,000 \mathrm{~mm} 2$

HPgTPC Pressure Vessel's components Design (Continue...)

- Design Inputs
- Cylindrical Shell Thickness Calculation
- Design of Elliptical Head (Appendix 1, ASME Section VIII, Div 1)
- Reinforcement Calculation for Manhole opening in Ellipsoidal Head (As per UG 37)
- Bolted Flange Design for Shell and Head as per ASME Section VIII Div 1 / Appendix 2
- Stresses in Vessel supported on Two Saddles: Zick Analysis (ASME Section VIII, Div 2)
- Design of Weldments
- 3D FEM Analysis for HPgTPC Pressure Vessel with distributed mass (300 Ton, ECAL)
- Summary \& future work

HPgTPC Pressure Vessel's components Design

 (Sizing Calculation of Bolts \& Shell Flange Stresses)
Bolted Flange Design for Shell and Head as per ASME Section VIII Div 1 / Appendix 2

Bolt Size Calculation:

Gasket Details (Table 2-5.1, ASMIE 2013,		Section VIII - Div 1)
S.N	Particulars	Values
$\mathbf{1}$	Material	Elastomer with cotton fabric
2	Gasket factor (m)	1.25
3	Min. Design Seating Stress y, MPa	2.8 MPa

Maximum Allowable stress for Bolt, Non-Ferrous (Table 3)

S. N	ASME Specification	UNS No	Class	Size
$\mathbf{1}$	SB-211	A92014	T6	$3-200 \mathrm{~mm}$
$\mathbf{2}$	Mini Tensile Stress		450 MPa	
$\mathbf{3}$	Mini Yield Stress		380 MPa	
$\mathbf{4}$	Max Allowable Stress	89.63 MPa		
$\mathbf{5}$	$\mathrm{Sa}=$ allowable bolt stress at atmospheric temperature			
$\mathbf{6}$	$\mathrm{Sb}=$ allowable bolt stress at design temperature			
7	$\mathrm{Sa}=\mathrm{Sb}=89.6 \mathrm{MPa}$			

HPgTPC Pressure Vessel's components Design

(Sizing Calculation of Bolts \& Shell Flange Stresses)

HPgTPC Pressure Vessel's components Design

(Flange Dimensions, Loads acting on Flange \& Shell Flange Stresses)

Flange Moments and Integral Flange Factors

S. N	Particulars	Values	
1	$\mathrm{M}_{\mathrm{D}}=\mathrm{H}_{\mathrm{D}} * \mathrm{~h}_{\mathrm{D}}$	$4.83 \mathrm{E}+09$	
2	$\mathrm{M}_{\mathrm{T}}=\mathrm{H}_{\mathrm{T}} * \mathrm{~h}_{\mathrm{T}}$	$2.04 \mathrm{E}+08$	
3	$\mathrm{M}_{\mathrm{G}}=\mathrm{H}_{\mathrm{G}} * \mathrm{~h}_{\mathrm{G}}$		$1.07 \mathrm{E}+08$
4	$\mathrm{M}_{\mathrm{O}}=$		$5.14 \mathrm{E}+09$
5	Flange	$\mathrm{K}=\mathrm{A} / \mathrm{B}$	1.12
	Factors	T	1.87
		U	19.14
		Y	17.42
6	$\mathrm{~h}_{\mathrm{o}}$	Z	9.01
7	F	$\sqrt{B g_{0}}=$	447.63
8	V		0.75
9	f		0.14

S. N	Particulars	Under operating Condition	Allowable Values	Remarks
$\mathbf{1}$	Longitudinal Hub Stresses, $S_{H}=\frac{f M_{0}}{L g_{1}^{2} B}$	60.67 MPa	108 MPa	Pass
2	Radial Flange Stress, S $\left.=\frac{(1.33 t e ~}{}+1\right) M_{0}$	54.00 MPa	80.7 MPa	Pass
3	Tangential Flange Stress,, $S_{T}=\frac{Y M_{0}}{t^{2} B}-Z S_{R}$	40.23 MPa	80.7 MPa	Pass

All three Stresses are within Allowable limit

HPgTPC Pressure Vessel's components Design (Continue...)

- Design Inputs \square
- Cylindrical Shell Thickness Calculation
- Design of Elliptical Head (Appendix 1, ASME Section VIII, Div 1)
- Reinforcement Calculation for Manhole opening in Ellipsoidal Head (As per UG 37)
- Bolted Flange Design for Shell and Head as per ASME Section VIII Div 1 / Appendix 2
- Stresses in Vessel supported on Two Saddles: Zick Analysis (ASME Section VIII, Div 2)
- Design of Weldments
- 3D FEM Analysis for HPgTPC Pressure Vessel with distributed mass (300 Ton, ECAL)
- Summary \& future work

HPgTPC Pressure Vessel's components Design

Stresses in Vessel supported on Two Saddles: Zick Analysis (ASME Section VIII, Div 2)

It is based on linear elastic mechanics considering failure modes as excessive deformation and elastic instability

Following stresses are evaluated:

- Longitudinal bending stress (Compression/ tension) at midspan \& at location of saddle
- Tangential shear stress at the location of saddle
- Circumferential bending stress at the horn of saddle
- Additional tensile stress in the head used as stiffener

Assumption: Vessel as an overhanging beam subjected to a uniform load due to the weight of the vessel and its contents.

Total Weight: 30 Ton (Dead Weight) +300
Ton weight $=\mathbf{3 3 0}$ Ton
Vessel Load per Saddle (Q): 115 Ton

Cylindrical shell acting as beam over two supports

Mean Shell Radius (Rm): 2880 mm Saddle contact angle: 150 degree Head height (h2): 2000 mm A (or 'a'): 1000 mm (should be less than $0.25^{*} \mathrm{~L}=1323 \mathrm{~mm} \Rightarrow$ Limit Value for locating the saddle L: Tangent to tangent length $=5192+2 * 50=5292 \mathrm{~mm}$

M1: 69 * E+6 Kg-mm
M2: 17 * E+6 Kg-mm
T: 47566 Kg

HPgTPC Pressure Vessel's components Design

(Longitudinal, Shear \& Circumferential Stresses in Vessel)

Longitudinal Stresses:

1. Longitudinal membrane plus bending stresses in the cylindrical shell between the supports

$$
\begin{gathered}
\sigma_{1}=\frac{P R_{m}}{2 t}-\frac{M_{2}}{\pi R_{m}^{2} t}=35.98 \mathrm{MPa}>\text { At the Top of the Shell } \\
\sigma_{2}=\frac{P R_{m}}{2 t}+\frac{M_{2}}{\pi R_{m}^{2} t}=36.02 \mathrm{MPa}>\text { At the bottom of the Shell }
\end{gathered}
$$

2. Longitudinal stresses in the cylindrical shell at the Support Locations (Depends upon rigidity of the shell at the support) Shell is considered as suitably stiffened because support is sufficiently close i.e. satisfy A (or a) $<=\mathbf{0 . 5} \mathbf{R m}$ (1440mm)

$$
\begin{aligned}
& \sigma_{3}=\frac{P R_{m}}{2 t}-\frac{M_{1}}{\pi R_{m}^{2} t}=35.9 \mathrm{MPa}>\text { At the Top of the Shell } \\
& \sigma_{4}=\frac{P R_{m}}{2 t}+\frac{M_{1}}{\pi R_{m}^{2} t}=36.1 \mathrm{MPa}>\text { At the bottom of the Shell }
\end{aligned}
$$

Acceptance Criteria: All four Longitudinal stresses $\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4}$ are less than $\mathrm{S}^{*} \mathrm{E}\left(80.7^{*} 1=80.7 \mathrm{MPa}\right)$
None of the above are negative, thus not required to check for compressive stresses.

HPgTPC Pressure Vessel's components Design

(Shear \& Circumferential Stresses in Vessel)

Shear Stresses:

The shear stress in the cylindrical shell without stiffening ring(s) and stiffened by an elliptical head, is a maximum at Points E and F.

$$
\theta=150^{\circ} \quad \beta=\frac{7 \pi}{12} \quad \alpha=0.95 * \beta=1.74 \mathrm{rad}
$$

Table 4.15.1
Stress Coefficients For Horizontal Vessels on Saddle
$\tau_{3}=\frac{K_{3} Q}{R_{m} t}=0.5 \mathrm{MPa} \quad>$ In Cylindrical Shell
$\tau_{3}^{*}=\frac{K_{3} Q}{R_{m} t_{h}}=0.7 \mathrm{MPa}>$ In the Formed Head
$K_{3}=0.47$
$K_{4}=0.3$

Membrane stress in an elliptical head acting as a stiffener:

$$
\sigma_{5}=\frac{K_{4} Q}{R_{m} t_{h}}+\frac{P R_{i}}{2 t_{h}}\left(\frac{R_{i}}{h_{2}}\right)=72.1 \mathbf{M P a} \quad \text { Well within the allowable limit, } 101 \mathrm{MPa}
$$

Maximum Shear Stress Location at point E \& F

Acceptance Criteria:

τ_{3} shall not exceed $0.6^{*} \mathrm{~S}\left(0.6^{*} 86.9=52.14 \mathrm{MPa}\right)$
τ_{3}^{*} shall not exceed $0.6^{*} \mathrm{Sh}$

Thus, Accepted

The absolute value of σ_{5} shall not exceed 1.25^{*} Sh

HPgTPC Pressure Vessel's components Design

FFermilab

(Longitudinal, Shear \& Circumferential Stresses in Vessel)

Circumferential Stresses:

(a) Maximum circumferential bending moment: the distribution of the circumferential bending moment at the saddle support is dependent on the use of stiffeners at the saddle location.
Cylindrical shell without a stiffening ring: the maximum circumferential bending moment is

$$
M_{\beta}=K_{7} * Q * R_{m} \quad K_{7}=\frac{K_{6}}{4} \quad \text { when } \frac{a}{R_{m}} \leq 0.5
$$

$$
\begin{aligned}
& K_{6}=\frac{\frac{3 \cos \beta}{4}\left(\frac{\sin \beta}{\beta}\right)^{2}-\frac{5 \sin \beta \cos ^{2} \beta}{4 \beta}+\frac{\cos ^{3} \beta}{2}-\frac{\sin \beta}{4 \beta}+\frac{\cos \beta}{4}-\beta \sin \beta\left[\left(\frac{\sin \beta}{\beta}\right)^{2}-\frac{1}{2}-\frac{\sin 2 \beta}{4 \beta}\right]}{2 \pi\left[\left(\frac{\sin \beta}{\beta}\right)^{2}-\frac{1}{2}-\frac{\sin 2 \beta}{4 \beta}\right]} \\
& \quad M_{\beta}=11.2 \mathrm{E}+6 \mathrm{~N} \text {-mm } \\
& \text { Width of the culindrical shell that contributes to Shell } \\
& \text { without stifeners }
\end{aligned}
$$

(b) Width of the cylindrical shell that contributes to the strength of the cylindrical shell at the saddle location.

$$
x_{1}, x_{2} \leq 0.78 * \sqrt{R_{m} * t}(247.64 \mathrm{~mm})
$$

$$
\begin{array}{ll}
\mathrm{x}=247.64+200=447.64 & x_{1}=x_{2}=50 \mathrm{~mm} \\
(\text { Which is less than a or } \mathrm{A}) & \mathrm{b}=400 \mathrm{~mm}
\end{array}
$$

 Circumferential Normal Stresses in the Cylinder

HPgTPC Pressure Vessel's components Design

*Fermilab

(Longitudinal, Shear \& Circumferential Stresses in Vessel)

Circumferential Stresses:

(c) Circumferential stresses in the cylindrical shell without stiffening ring(s)
1.The maximum compressive circumferential membrane stress in the cylindrical shell at the base of the saddle support

$$
\sigma_{6}=\frac{K_{5} * Q * k}{t\left(b+x_{1}+x_{2}\right)}=5 \mathrm{MPa} \quad K_{5}=\frac{1+\cos \alpha}{\pi-\alpha+\sin \alpha \cos \alpha}=0.67
$$

2.The circumferential compressive membrane plus bending stress at Points \mathbf{G} and \mathbf{H}

$$
\sigma_{7}^{*}=\frac{-Q}{4 t\left(b+x_{1}+x_{2}\right)}-\frac{12 K_{7} Q R_{m}}{L t^{2}}=\mathbf{1 5 0} \mathbf{~ M P a} \quad \text { For } \mathrm{L}<8^{*} R_{m} \text { (Satisfy) } \quad K_{7}=0.25
$$

3. The stresses σ_{6} and σ_{7}^{*} may be reduced by adding a reinforcement or wear plate at the saddle location that is welded to the cylindrical shell.

$$
\sigma_{6, r}=\frac{-K_{5} Q k}{b_{1}\left(t+n t_{r}\right)}
$$

$\sigma_{7, r}^{*}=\frac{-Q}{4\left(t+n t_{r}\right) b_{1}}-\frac{12 K_{7} Q R_{m}}{L\left(t+n t_{r}\right)^{2}}=44.21 \mathrm{MPa}$

Locations of Max Circumferential Normal Stresses in the Cylinder

$$
\mathrm{n}=\min \left[\frac{S_{r}}{s}, 1.0\right] \quad b_{1}=500
$$

$\mathrm{t}_{\mathrm{r}}=$ reinforcing plate thickness $=35 \mathrm{~mm}$
$\mathrm{t}=$ shell thickness $=42 \mathrm{~mm}$

HPgTPC Pressure Vessel's components Design

(Longitudinal, Shear \& Circumferential Stresses in Vessel)

Acceptance Criteria for Circumferential Stress:

1. The absolute value of σ_{6} shall not exceed S
2. The absolute value of $\sigma_{7}^{*}, \sigma_{6, r}, \sigma_{7, r}^{*}$ shall not exceed $1.25^{*} \mathrm{~S}$

S. \mathbf{N}	Stresses	Calculated Values	Allowable Values	Remarks
1	σ_{6}	5 MPa	$\mathrm{S}: 80.7 \mathrm{MPa}$	Pass
2	σ_{7}^{*}	150 MPa	$1.25 * \mathrm{~S}: 101 \mathrm{MPa}$	Fail
3	$\sigma_{7, r}^{*}$	44 MPa	$1.25 * \mathrm{~S}: 101 \mathrm{MPa}$	Pass

S. N	Particulars	Values
$\mathbf{1}$	Reinforcement Plate Thickness, tr	35 mm
2	Width of Reinforcement Plate, b1	500 mm
To be welded near the Support		

HPgTPC Pressure Vessel's components Design (Continue...)

- Design Inputs \square
- Cylindrical Shell Thickness Calculation
- Design of Elliptical Head (Appendix 1, ASME Section VIII, Div 1)
- Reinforcement Calculation for Manhole opening in Ellipsoidal Head (As per UG 37)
- Bolted Flange Design for Shell and Head as per ASME Section VIII Div 1 / Appendix 2
- Stresses in Vessel supported on Two Saddles: Zick Analysis (ASME Section VIII, Div 2)
- Design of Weldments
- 3D FEM Analysis for HPgTPC Pressure Vessel with distributed mass (300 Ton, ECAL)
- Summary \& future work

Design of Weldments (As per ASME Subsection B)

- Weld joint categories and joint efficiency consideration
- Design of Weld Joints
- Challenges of Welding Aluminum cum Solutions
- Markey survey of standard available dimension of AL \& layout of shell and head portion of PV

HPgTPC Pressure Vessel's components Design

Design of Weldments (As per ASME Subsection B)

ASME BPV Code has four categories of welds: A, B, C \& D

Category C: Welds connecting flanges, tube-sheets or flat heads to the main shell, a formed head, neck or nozzle.

Category A:
Longitudinal or spiral welds in the main shell, necks or nozzles, or circumferential welds connecting hemispherical heads to the main shell,

Category D: Welds connecting communicating chambers or nozzles to the main shell, to heads or to necks.

Category B:
Circumferential welds in the main shell, necks or nozzles or connecting a formed head other than hemispherical.

| Joint Description | Joint Category | Degree of Radiographic Examination |
| :--- | :--- | :--- | :---: | :---: |
| Double-welded butt joint | | |

HPgTPC Pressure Vessel's components Design

Design of Weldments (As per ASME Subsection B)

Design of Weld Joints

HPgTPC Pressure Vessel's components Design

Design of Weldments (As per ASME Subsection B)

Challenges of Welding Aluminum cum Solutions

SN	Challenges	Problem caused	Solutions
1.	Thermal conductivity	Aluminum is 5 times more thermally conductive than steel. It can cause a lack of penetration in the weld.	Preheating the aluminum workpiece
2.	Hydrogen \& Porosity	It is very soluble in liquid aluminum. Once the molten material starts to solidify, it can't hold the hydrogen in a homogenous mixture anymore. The hydrogen forms bubbles that become trapped in the metal, leading to porosity.	Shielding by inert gas
3.	Melting Point	Aluminum has lower melting point than steel that can result in burn-throughs. However, aluminum oxide has a much higher melting point than aluminum base metal. It acts as an insulator that can cause arc start problems and very high heat is required to weld through the oxide layer. This can cause burn-through on the base material and porosity, since the oxide layer tends to hold moisture.	Welding machine with current control is useful for keeping the aluminum work piece from overheating, causing a burn-through. Proper cleaning and removing the oxide layers are utmost important.
4.	Sample testing	Weldment Test Specimen Qualification as per Section IX of ASME: WPS Specification) \& PQR (Procedure Qualification Record) will be carr	S (Welding Procedure ed out.

Market Survey \& Shell portion Layout

Required Surface area for shell portion $=5192 * 17977=93336584 \mathrm{~mm} 2$

As per Market Survey:

Available standard dimension: $\mathbf{1 2 0 0} \mathbf{~ m m ~ X ~} \mathbf{6 0 0 0} \mathbf{~ m m ~ X ~} 42 \mathrm{~mm}$
Available Surface area $=1200 \mathrm{~mm} \mathrm{X} 6000 \mathrm{~mm}=7200000 \mathrm{~mm} 2$
So, number of such AL plates for shell $=93336584 / 7200000=13$
Required Surface area for one ellipsoidal head $=41166347 \mathrm{~mm} 2$
So, required number of such AL plates $=41166347 / 7200000=06$
Total plates required for ellipsoidal head $=\mathbf{1 2}$
Total such plates required for vessel fabrication $=25$
Plates will be joined with Double welded butt joint as per code.

HPgTPC Pressure Vessel's components Design (Continue...)

- Design Inputs
- Cylindrical Shell Thickness Calculation
- Design of Elliptical Head (Appendix 1, ASME Section VIII, Div 1)
- Reinforcement Calculation for Manhole opening in Ellipsoidal Head (As per UG 37)
- Bolted Flange Design for Shell and Head as per ASME Section VIII Div 1 / Appendix 2
- Stresses in Vessel supported on Two Saddles: Zick Analysis (ASME Section VIII, Div 2)
- Design of Saddle's components

- Design of Weldments
- 3D FEM Analysis for HPgTPC Pressure Vessel with distributed mass (300 Ton, ECAL)

3D FE Analysis with distributed mass (300 Ton, ECAL)

FFermilab

Design Conditions

S.	Particulars	Values
N		
1	Internal Pressure	10 bar (1 MPa)
2	Material	AL 5083
3	ID of Shell	5725 mm
4	Head Type	Ellipsoidal (D/2h = 1.43)
5	Manhole ID	1000 mm
6	Distributed Mass	300 Ton
7	Shell Thickness	40 mm
8	Nozzle Height	Zero

3D FEM Analysis with distributed mass (300 Ton, ECAL) Fermilab

Maximum Deflection in Shell: $\mathbf{8 . 8 1 7} \mathbf{~ m m}$
Saddle Contact Angle: 120 degree

3D FEM Analysis with distributed mass (300 Ton, ECAL)

Summary and work in progress

- Design and analysis of Pressure vessel for HPgTPC carried out
- A preliminary design report is being prepared based on the latest design
- Analysis of protection against Plastic Collapse (locally and globally) As per ASME, Section VIII, Div 2, Part 5
- FE Analysis Analysis with distributed mass (ECAL: 300 Ton) in different sitting conditions with reference to pressure vessel.
- Welding of Aluminum plates of shell thickness being taken up to establishing Welding procedure
- Details of instrumentation ports opening, cable routing, details (volume, weight, method of fitments with Pressure vessel) of detector sitting inside pressure vessel will be required for final design. Similar details are required for ECAL.
- Interface between pressure vessel and superconducting magnet to be looked into
- Assembly sequence of Pressure vessel and SC magnet need decided.
- Fabrication planning and transportation methods being worked out

Thank You For Your Kind Attention

