

"Design & Analysis of Pressure Vessel for HPgTPC Detector"

DUNE TIFR Near Detector Workshop : 27th-29th FEB-2020

Prashant Kumar, Vikas Teotia, Sanjay Malhotra

Bhabha Atomic Research Centre, Trombay, India

- Introduction and Overall System Layout
- HPgTPC Pressure Vessel Nomenclature
- Material Selection & Corresponding Allowable S (ASME, Section II, Part D) for PV Materials
- Maximum Allowable Stress for AL 5083 Series
- <u>HPgTPC Pressure Vessel's components design:</u>
 - Shell Thickness Calculation
 - Design of Elliptical Head (Appendix 1, ASME Section VIII, Div 1)
 - Reinforcement Calculation for Manhole opening in Ellipsoidal Head (UG-37)
 - Bolted Flange Design for Shell and Head as per ASME Section VIII Division 1 / Appendix 2
 - Stresses in Vessel supported on Two Saddles: Zick Analysis (ASME Section VIII, Div 2)
 - Design of Weldments
 - 3D FEM Analysis for HPgTPC Pressure Vessel with distributed mass (300 Ton, ECAL)
- Future Work

Introduction and Overall System Layout

Feb 27-29 2020, TIFR

HPgTPC Pressure Vessel Nomenclature

- Design Inputs
- Cylindrical Shell Thickness Calculation
- Design of Elliptical Head (Appendix 1, ASME Section VIII, Div 1)
- Reinforcement Calculation for Manhole opening in Ellipsoidal Head (UG-37)
- Bolted Flange Design for Shell and Head as per ASME Section VIII Division 1 / Appendix 2
- Stresses in Vessel supported on Two Saddles: Zick Analysis (ASME Section VIII, Div 2)
- Design of Weldments
- 3D FEM Analysis for HPgTPC Pressure Vessel with distributed mass (300 Ton, ECAL)
- Summary & future work

Design Inputs

S N	Parameters	Values
01	Internal Working Pressure	10 bar (1 MPa)
02	Design pressure (P)* (Adding minimum 5% to 10% to the Maximum Working Pressure)	1.05 MPa
03	Hydrostatic Pressure	1.3 * Design Pressure
04	ID of Shell	5725 mm
05	Length of cylindrical Shell	5192 mm
06	Material of Construction	Al 5083
07	Electromagnetic Calorimeter (As an external weight)	300Ton
08	Maximum Allowable Stress (S)	86.9 MPa
09	Joint efficiency (E)	1.00
10	Design Temperature	Room Temp

* Design pressure (P) is chosen 5 % higher (lower side of margin), so that it will not affect radiation length criteria

- Design Inputs
- Cylindrical Shell Thickness Calculation
- Design of Elliptical Head (Appendix 1, ASME Section VIII, Div 1)
- Reinforcement Calculation for Manhole opening in Ellipsoidal Head (UG-37)
- Bolted Flange Design for Shell and Head as per ASME Section VIII Division 1 / Appendix 2
- Stresses in Vessel supported on Two Saddles: Zick Analysis (ASME Section VIII, Div 2)
- Design of Weldments
- 3D FEM Analysis for HPgTPC Pressure Vessel with distributed mass (300 Ton, ECAL)
- Summary & future work

Cylindrical Shell Thickness Calculation

(1) Circumferential Stress (Longitudinal Joints)

When the thickness does not exceed one-half of the inside radius, or P does not exceed 0.385*SE*, the following formulas shall apply:

$$t = \frac{P_i D_i}{2\text{SE} - 1.2P_i} = \frac{1.05 \ (MPa) * 5725mm}{2 * 80.7 * 1 \ (MPa) - 1.2 * 1.05 \ (MPa)} = 37.54 = 38 \ mm$$

(2) Longitudinal Stress (Circumferential Joints)

When the thickness does not exceed one-half of the inside radius, or P does not exceed 1.25SE, the following formulas shall apply:

$$t = \frac{P_i D_i}{4SE + 0.8P_i} = \frac{1.05 * 5725}{4 * 80.7 * 1 + 0.8 * 1.05} = 18.6 \approx 19 \text{ mm}$$

Therefore, Minimum shell thickness: 38 mm

Shell thickness: 42 mm

- Design Inputs
- Cylindrical Shell Thickness Calculation
- Design of Elliptical Head (Appendix 1, ASME Section VIII, Div 1)
- Reinforcement Calculation for Manhole opening in Ellipsoidal Head (UG-37)
- Bolted Flange Design for Shell and Head as per ASME Section VIII Division 1 / Appendix 2
- Stresses in Vessel supported on Two Saddles: Zick Analysis (ASME Section VIII, Div 2)
- Design of Weldments
- 3D FEM Analysis for HPgTPC Pressure Vessel with distributed mass (300 Ton, ECAL)
- Summary & future work

Design of Elliptical Head (Appendix 1, ASME Section VIII, Div 1)

t =
$$\frac{\text{PDK}}{2\text{SE} - 0.2\text{P}}$$
 $K = \frac{1}{6} \left[2 + \left(\frac{D}{2h}\right)^2 \right]$ $D / 2h = 1.4$

K = 0.66

Minimum thickness required = 26 mm

Specified Thickness: 30 mm

Crown radius = K * D = 0.67 * 5725 = 3779 mm

S. N	Stresse	S	Calcula ted Values	Allowable Values	Re mar ks
1	$\sigma_{\rm L} = \sigma_{\rm h}$ (At Cro	wn)	70MPa	80.7 MPa	Pass
2	At Equat	$\sigma_{ m L}$	50 MPa	80.7 MPa	Pass
	or	$\sigma_{ m h}$	2 MPa	80.7 MPa	Pass

S. N	Description	Value
1	Design Pressure (P)	10.5 bar (1.05 MPa)
2	D	5725 mm
3	Κ	0.66
4	S (AL 5083)	80.7 MPa
5	E as per UW-12	1.00

Material Selection & Corresponding Allowable Stress (ASME, Section II, Part D)

				Min	. Ten-	Min.	A	pplica	bility ar l (NP = No (SPT = S	nd Max. Limits ot Perm Support:	Tempera nitted) s Only)	ature	_			
Line No.	Size/T ness,	hick-	P-No.	s Stre M	ile ength, IPa	Yield Strengtl MPa	1, I		ш		VIII-1	XII	Extern Pressu Chart M	nal ire No.	Notes	
31	1.30-38	3.10	25	2	75	125	NF	P 6	6 (Cl. 3	only)	66	66	NFA-11		G18, G19	
32	38.11-7	6.20	25	2	70	120	NF	P 6	6 (Cl. 3	only)	66	66	NFA-11		G18, G19	
33	76.21-1	27.00	25	2	60	110	NF	° 6	6 (Cl. 3	only)	66	66	NFA-11		G18, G19	
34	127.01-	177.80	25	2	55	100	NF	° 6	6 (Cl. 3	only)	66	66	NFA-11		G18, G19	
35	177.81-	203.2	25	2	50	97	NF	° 6	6 (Cl. 3	only)	66	66	NFA-11		G18, G19	
36	6.35-38	3.10	25	2	75	125	NF	° 6	6 (Cl. 3	only)	66	66	NFA-11		G18, G19	, W3
37	38.11-7	6.20	25	2	70	120	NF	° 6	6 (Cl. 3)	only)	66	66	NFA-11		G18, G19	, W3
38	4.78-38	3.10	25	3	05	215	NF	P 6	6 (Cl. 3 (only)	66	66	NFA-11		G18, G19	, W3
39	38.11-7	6.20	25	2	85	200	NF	° 6	6 (Cl. 3	only)	66	66	NFA-11		G18, G19	, W3
		М	aximun	1 Allow	able Str	ess, MPa	(Multip	ly by 1	1000 to	Obtain	kPa), for	Metal	Temperat	ture,	°C, Not E	cceeding
	-30															
Line	e to															
No.	40	65	100	125	150	175	200	225	250	275	300	325	350	375	400	425
31	78.6	78.6														
32	76.5	76.5														
33	73.8	73.8														
34	68.9	68.9														
35	64.1	64.1														
36	78.6	78.6														
37	76.5	76.5														
38	86.9	86.9														
39	80.7	80.7														

- Design Inputs
- Cylindrical Shell Thickness Calculation
- Design of Elliptical Head (Appendix 1, ASME Section VIII, Div 1)
- Reinforcement Calculation for Manhole opening in Ellipsoidal Head (As per UG 37)
- Bolted Flange Design for Shell and Head as per ASME Section VIII Division 1 / Appendix 2
- Stresses in Vessel supported on Two Saddles: Zick Analysis (ASME Section VIII, Div 2)
- Design of Weldments
- 3D FEM Analysis for HPgTPC Pressure Vessel with distributed mass (300 Ton, ECAL)
- Summary & future work

Reinforcement for Manhole in Ellipsoidal Head (UG 37)

- Design Inputs
- Cylindrical Shell Thickness Calculation
- Design of Elliptical Head (Appendix 1, ASME Section VIII, Div 1)
- Reinforcement Calculation for Manhole opening in Ellipsoidal Head (As per UG 37)
- Bolted Flange Design for Shell and Head as per ASME Section VIII Div 1 / Appendix 2
- Stresses in Vessel supported on Two Saddles: Zick Analysis (ASME Section VIII, Div 2)
- Design of Weldments
- 3D FEM Analysis for HPgTPC Pressure Vessel with distributed mass (300 Ton, ECAL)
- Summary & future work

(Sizing Calculation of Bolts & Shell Flange Stresses)

Bolted Flange Design for Shell and Head as per ASME Section VIII Div 1 / Appendix 2

Bolt Size Calculation:

Gas	sket Details (Table 2-5.1, ASME	2013, Section VIII - Div 1)
S.N	Particulars	Values
1	Material	Elastomer with cotton fabric
2	Gasket factor (m)	1.25
3	Min. Design Seating Stress y,	2.8 MPa
	MPa	

Maximum Allowable stress for Bolt, Non-Ferrous (Table 3)							
S. N	ASME Specification	UNS No	Class	Size			
1	SB-211	A92014	T6	3-200 mm			
2	Mini Tensile Stress 450 MPa						
3	Mini Yield Stress 380 MPa						
4	Max Allowable Stress 89.63 MPa						
5	Sa = allowable bolt stress at atmospheric temperature						
6	Sb = allowable bolt stress at design temperature						
7	Sa = Sb = 89.6 MPa						

(Sizing Calculation of Bolts & Shell Flange Stresses)

S.N	Particulars	Values	t h
01	Minimum gasket contact width (N)	38 mm	$ \xrightarrow{t} \xrightarrow{t} \xrightarrow{t} \xrightarrow{t} \xrightarrow{t} \xrightarrow{t} \xrightarrow{t} \xrightarrow{t}$
02	В	5725 mm	Δ
03	G _{ID}	5765 mm	W
04	G _{OD}	5841 mm	
05	b_0 (basic gasket seating width from sketch 1a, column II, Table 2-5.2)	N/2 = 19 mm (> 6 mm)	h_T h_G R h_D
06	b (effective gasket or joint-contact-surface seating width)	$2.5 * \sqrt{b_0} = 10.9 \text{ mm}$	g_1 H_D
07	W_{m1} = Minimum required bolt load for operating condition = $0.785*G^{2*}P+2b*3.14*G*m*P$	27080.444 KN Or (2.7*10 ⁷) N	$ \xrightarrow{H_T} g_1/2 \qquad \qquad$
08	W_{m2} = Minimum required bolt load for gasket seating = $3.14*b*G*y$	5.58*10 ⁵ N	В
09	Minimum total required bolt area (A_m) = $Max (A_{m1}, A_{m2}) = Max (\frac{W_{m1}}{S_b}, \frac{W_{m2}}{S_a})$	<u>3,02,237 mm²</u>	Integral-Type Flange
10	Bolt Selected	M64 X 140	000000
11	Minimum Diameter of Bolt Required	53 mm	
12	Root Area as per TEMA for M64	2467.15 mm ²	
13	Total C.S.A of bolt Provided (A _b)	3,45,401 mm ²	
14	Provided Diameter of Bolt	56 mm	
15	Design Check	$A_b > A_m$ Okay	
16	Flange Design Bolt Load $W = \frac{(A_m + A_b)S_a}{2}$	28418.604 KN	
	DUNE Near Detector meeting TIER	Feb 27-29 2020 TIFR	16

(Flange Dimensions, Loads acting on Flange & Shell Flange Stresses)

(Shell Flange Stresses)

Flange	Moments a	nd Integra	l Flange Fa	actor	S	Flar	nge Stresses		
S. N	Particulars		Values		S.	Particulars	Under	Allowable	Remarks
1 2	$M_{\rm D} = H_{\rm D} * h_{\rm I}$ $M_{\rm T} = H_{\rm T} * h_{\rm T}$		4.83E+09 2.04E+08		Ν		operating Condition	Values	
3 4	$M_{G} = H_{G} * h_{C}$ $M_{O} =$	3	1.07E+08 5.14E+09		1	Longitudinal Hub	60.67 MPa	108 MPa	Pass
5	Flange Factors	K = A/B T U	1.12 1.87 19.14		2	Stresses, $S_H = \frac{J M_0}{Lg_1^2 B}$ Radial Flange Stress, $(1.33te + 1)M_0$	54.00 MPa	80.7 MPa	Pass
6	h _o F	$\frac{1}{\sqrt{Bg_0}} =$	9.01 447.63		3	$S_R = \frac{Lt^2 B}{Lt^2 B}$ Tangential Flange Stress, $\frac{YM_0}{T} = \frac{T}{T}$	40.23 MPa	80.7 MPa	Pass
8 9	V f		0.14			$S_T = \frac{1}{t^2 B} - 2S_R$ All three Stresses	s are within Allo	wable limit	

- Design Inputs
- Cylindrical Shell Thickness Calculation
- Design of Elliptical Head (Appendix 1, ASME Section VIII, Div 1)
- Reinforcement Calculation for Manhole opening in Ellipsoidal Head (As per UG 37)
- Bolted Flange Design for Shell and Head as per ASME Section VIII Div 1 / Appendix 2 \checkmark
- Stresses in Vessel supported on Two Saddles: Zick Analysis (ASME Section VIII, Div 2)
- Design of Weldments
- 3D FEM Analysis for HPgTPC Pressure Vessel with distributed mass (300 Ton, ECAL)
- Summary & future work

Stresses in Vessel supported on Two Saddles: Zick Analysis (ASME Section VIII, Div 2)

It is based on linear elastic mechanics considering failure modes as excessive deformation and elastic instability

CLongitudinal bending at saddles (tension at top and compression at bottom)

Following stresses are evaluated:

- Longitudinal bending stress (Compression/ tension) at midspan & at location of saddle by the overall bending of the vessel
- Tangential shear stress at the location of saddle
- Circumferential bending stress at the horn of saddle
- Additional tensile stress in the head used as stiffener

Assumption: Vessel as an overhanging beam subjected to a uniform load due to the weight of the vessel and its contents.

(Longitudinal, Shear & Circumferential Stresses in Vessel)

Longitudinal Stresses:

1. Longitudinal membrane plus bending stresses in the cylindrical shell between the supports

$$\sigma_1 = \frac{PR_m}{2t} - \frac{M_2}{\pi R_m^2 t} = 35.98 \text{ MPa} > \text{At the Top of the Shell}$$

$$\sigma_2 = \frac{PR_m}{2t} + \frac{M_2}{\pi R_m^2 t} = 36.02 \text{ MPa} > \text{At the bottom of the Shell}$$

2. Longitudinal stresses in the cylindrical shell at the Support Locations (Depends upon rigidity of the shell at the support) Shell is considered as suitably stiffened because support is sufficiently close i.e. satisfy A (or a) <= 0.5 Rm (1440mm)</p>

$$\sigma_3 = \frac{PR_m}{2t} - \frac{M_1}{\pi R_m^2 t} = 35.9 \text{ MPa} > \text{At the Top of the Shell}$$

$$\sigma_4 = \frac{PR_m}{2t} + \frac{M_1}{\pi R_m^2 t} = 36.1 \text{ MPa} > \text{At the bottom of the Shell}$$

Acceptance Criteria: All four Longitudinal stresses $\sigma_1 \sigma_2 \sigma_3 \sigma_4$ are less than S*E (80.7*1= 80.7 MPa)

None of the above are negative, thus not required to check for compressive stresses.

(Shear & Circumferential Stresses in Vessel)

Shear Stresses:

The shear stress in the cylindrical shell without stiffening ring(s) and stiffened by an elliptical head, is a maximum at Points E and F.

$$\theta = 150^{\circ} \qquad \beta = \frac{7\pi}{12} \qquad \alpha = 0.95 * \beta = 1.74 \text{ rad}$$

$$\tau_{3} = \frac{K_{3}Q}{R_{m}t} = 0.5 \text{ MPa} \qquad > \text{ In Cylindrical Shell}$$

$$\tau_{3}^{*} = \frac{K_{3}Q}{R_{m}t_{h}} = 0.7 \text{ MPa} \qquad > \text{ In the Formed Head}$$

$$Table 4.15.1$$

$$Stress Coefficients For Horizontal Vessels on Saddle Supports$$

$$K_{3} = 0.47$$

$$K_{4} = 0.3$$

Membrane stress in an elliptical head acting as a stiffener:

$$\sigma_5 = \frac{K_4 Q}{R_m t_h} + \frac{PR_i}{2t_h} \left(\frac{R_i}{h_2}\right) = 72.1 \text{ MPa} \quad \text{Well within the allowable limit, 101}$$

Acceptance Criteria:

 τ_3 shall not exceed 0.6*S (0.6*86.9 = 52.14 MPa) τ^* shall not exceed 0.6*Sh

 au_3^* shall not exceed 0.6*Sh

The absolute value of σ_5 shall not exceed 1.25*Sh_

 $\alpha = 0.95\beta$

(Longitudinal, Shear & Circumferential Stresses in Vessel)

Circumferential Stresses:

(a) Maximum circumferential bending moment: the distribution of the circumferential bending moment at the saddle support is dependent on the use of stiffeners at the saddle location.
 Cylindrical shell without a stiffening ring: the maximum circumferential

bending moment is

$$M_{\beta} = K_{7} * Q * R_{m} \qquad K_{7} = \frac{K_{6}}{4} \qquad \text{when } \frac{a}{R_{m}} \le 0.5$$

$$M_{\beta} = K_{7} * Q * R_{m} \qquad K_{7} = \frac{K_{6}}{4} \qquad \text{when } \frac{a}{R_{m}} \le 0.5$$

$$Max. B.M: Shell without stiffeners$$

$$k_{6} = \frac{\frac{3\cos\beta}{4} \left(\frac{\sin\beta}{\beta}\right)^{2} - \frac{5\sin\beta\cos^{2}\beta}{4\beta} + \frac{\cos^{3}\beta}{2} - \frac{\sin\beta}{4\beta} + \frac{\cos\beta}{4} - \beta\sin\beta \left[\left(\frac{\sin\beta}{\beta}\right)^{2} - \frac{1}{2} - \frac{\sin2\beta}{4\beta} \right]$$

$$M_{\beta} = 11.2E+6 \text{ N-mm}$$
(b) Width of the cylindrical shell that contributes to the strength of the cylindrical shell at the saddle location.

$$x_{1}, x_{2} \le 0.78 * \sqrt{R_{m} * t} (247.64 \text{ mm})$$

$$x = 247.64 + 200 = 447.64 \qquad x_{1} = x_{2} = 50 \text{ mm}$$
(Which is less than a or A) b = 400 \text{ mm}

(Longitudinal, Shear & Circumferential Stresses in Vessel)

Circumferential Stresses:

(c) Circumferential stresses in the cylindrical shell without stiffening ring(s)

1.The maximum compressive circumferential membrane stress in the cylindrical shell **<u>at the base of the saddle support</u>**

(Longitudinal, Shear & Circumferential Stresses in Vessel)

To be welded near the Support

Reinforcement Plate Configuration

- Design Inputs
- Cylindrical Shell Thickness Calculation
- Design of Elliptical Head (Appendix 1, ASME Section VIII, Div 1)
- Reinforcement Calculation for Manhole opening in Ellipsoidal Head (As per UG 37)
- Bolted Flange Design for Shell and Head as per ASME Section VIII Div 1 / Appendix 2
- Stresses in Vessel supported on Two Saddles: Zick Analysis (ASME Section VIII, Div 2)
- Design of Weldments
- 3D FEM Analysis for HPgTPC Pressure Vessel with distributed mass (300 Ton, ECAL)
- Summary & future work

Design of Weldments (As per ASME Subsection B)

- Weld joint categories and joint efficiency consideration
- Design of Weld Joints
- Challenges of Welding Aluminum cum Solutions
- Markey survey of standard available dimension of AL & layout of shell and head portion of PV

Design of Weldments (As per ASME Subsection B)

ASME BPV Code has four categories of welds: A, B, C & D

Category C: Welds connecting flanges, tube-sheets or flat heads to the main shell, a formed head, neck or nozzle.

Category D: Welds connecting communicating chambers or nozzles to the main shell, to heads or to necks.

Category A: Longitudinal or spiral welds in the main shell, necks or nozzles, or *circumferential welds connecting hemispherical heads* to the main shell,

necks or nozzles.

Category B: Circumferential welds in the main shell, necks or nozzles or connecting a formed head other than hemispherical.

Design of Weldments (As per ASME Subsection B)

Joint Description	Joint Category	Degree of Radiographic Examination				
		Full	Spot	None		
Double-welded butt joint	A, B, C, D	1.0	0.85	0.70		
Single-welded butt joint with backing strip	A, B, C, D	0.9	0.8	0.65		
Single-welded butt joint without backing strip	A, B, C	NA	NA	0.60		
Double full fillet lap joint	A, B, C	NA	NA	0.55		
Single full fillet lap joint with plug welds	B, C	NA	NA	0.50		
Single full fillet lap joint with plug welds	A, B	NA	NA	0.45		
	Type of weld and method	of inspection	ı jointly define the	weld joint efficiency		

Feb 27-29 2020, TIFR

Design of Weldments (As per ASME Subsection B)

Design of Weld Joints

		Specification o	f Double V	-groove weld / Butt Joint (CJP)
s.	Desc	Description		
Ν				
1.	Base metal t	hickness (T1	40 mm	$\sim \alpha \sim 1$
	or t)			
2.	Groove	Root opening	3 mm	
	preparation	(R)		
		Root face (f)	2-3 mm	
		Groove angle	60°	$f \rightarrow $
		(α)		
3.	Welding pos	sition / location	All	α
4.	Welding pro	cess	GTAW	
			or	GTAW: Gas tungsten arc welding
			GMAW	GMAW: Gas metal arc welding
5.	Permissible Tensile Stress		80.7	Shiri i Sub metar are werding
	of Plate		MPa	
6.	Plate Dimen	sion: 1200 mm 2	X 6000 mn	n X 40 mm

Design of Weldments (As per ASME Subsection B)

Challenges of Welding Aluminum cum Solutions

SN	Challenges	Problem caused	Solutions
1.	Thermal conductivity	Aluminum is 5 times more thermally conductive than steel. It can cause a lack of penetration in the weld.	Preheating the aluminum workpiece
2.	Hydrogen & Porosity	It is very soluble in liquid aluminum. Once the molten material starts to solidify, it can't hold the hydrogen in a homogenous mixture anymore. The hydrogen forms bubbles that become trapped in the metal, leading to porosity .	Shielding by inert gas
3.	Melting Point	Aluminum has lower melting point than steel that can result in burn-throughs. However, aluminum oxide has a much higher melting point than aluminum base metal . It acts as an insulator that can cause arc start problems and very high heat is required to weld through the oxide layer. This can cause burn-through on the base material and porosity, since the oxide layer tends to hold moisture.	Welding machine with current control is useful for keeping the aluminum work piece from overheating, causing a burn-through. Proper cleaning and removing the oxide layers are utmost important.
4.	Sample testing	Weldment Test Specimen Qualification as per Section IX of ASME: WA Specification) & PQR (Procedure Qualification Record) will be carr	PS (Welding Procedure ried out.

Market Survey & Shell portion Layout

Required Surface area for shell portion = 5192 * 17977 = 93336584 mm2As per Market Survey: mm Available standard dimension: 1200 mm X 6000 mm X 42 mm 797 Available Surface area = 1200 mm X 6000 mm = 7200000 mm2 So, number of such AL plates for shell = 93336584 / 720000 = 13S \sim Required Surface area for one ellipsoidal head = 41166347 mm257 17 So, required number of such AL plates = 41166347 / 720000 = 06 \mathbf{c} Total plates required **for ellipsoidal head = 12** Total such plates required for vessel fabrication = 25Plates will be joined with Double welded butt joint as per code.

- Design Inputs
- Cylindrical Shell Thickness Calculation
- Design of Elliptical Head (Appendix 1, ASME Section VIII, Div 1)
- Reinforcement Calculation for Manhole opening in Ellipsoidal Head (As per UG 37)
- Bolted Flange Design for Shell and Head as per ASME Section VIII Div 1 / Appendix 2
- Stresses in Vessel supported on Two Saddles: Zick Analysis (ASME Section VIII, Div 2)
- Design of Saddle's components
- Design of Weldments
- **3D FEM Analysis for HPgTPC Pressure Vessel with distributed mass (300 Ton, ECAL)**

3D FE Analysis with distributed mass (300 Ton, ECAL)

Design Conditions

S. N	Particulars	Values
1	Internal Pressure	10 bar (1 MPa)
2	Material	AL 5083
3	ID of Shell	5725 mm
4	Head Type	Ellipsoidal ($D/2h = 1.43$
5	Manhole ID	1000 mm
6	Distributed Mass	300 Ton
7	Shell Thickness	40 mm
8	Nozzle Height	Zero

3D FEM Analysis with distributed mass (300 Ton, ECAL)

Maximum Deflection in Shell: 8.817 mm

Saddle Contact Angle: 120 degree

3D FEM Analysis with distributed mass (300 Ton, ECAL)

Maximum Von-Mises Stress is near Saddle Horn

- Design and analysis of Pressure vessel for HPgTPC carried out
- A preliminary design report is being prepared based on the latest design
- Analysis of protection against Plastic Collapse (locally and globally) As per ASME, Section VIII, Div 2, Part
 5
- FE Analysis Analysis with distributed mass (ECAL: 300 Ton) in different sitting conditions with reference to pressure vessel.
- Welding of Aluminum plates of shell thickness being taken up to establishing Welding procedure
- Details of instrumentation ports opening, cable routing, details (volume, weight, method of fitments with Pressure vessel) of detector sitting inside pressure vessel will be required for final design. Similar details are required for ECAL.
- Interface between pressure vessel and superconducting magnet to be looked into
- Assembly sequence of Pressure vessel and SC magnet need decided.
- Fabrication planning and transportation methods being worked out

Thank You For Your Kind Attention