Physics Opportunities with the STT Configurations

R. Petti

University of South Carolina, USA

DUNE Near Detector discussion meeting TIFR, Mumbai, India, February 29, 2020

STT CONFIGURATIONS CONSIDERED

(from talk by S. Bertolucci at LBNC, 6 December 2019)

STT mass: 7.4 tons CH₂ FV mass: 4.7 tons Graphite FV mass: 504 kg STT mass: 2.0 tons CH₂ FV mass: 1.44 tons Graphite FV mass: 160 kg Description of full STT option with the results of complete detector simulations, event reconstruction and physics performance is available in DUNE docdb # 13262: https://docs.dunescience.org/cgi-bin/private/ShowDocument?docid=13262

⇒ Benchmark for the STT performance in SAND and physics sensitivity studies

- Contribution (# 131) to the European Particle Physics Strategy Update 2018-2020: https://indico.cern.ch/event/765096/contributions/3295805/
- Ongoing sensitivity studies to evaluate the physics performance of 3DST+STT: rescale statistics by fiducial mass & study reconstruction/acceptance effects

3

A Proposal to Enhance the DUNE Near-Detector Complex

G. Adamov^{1,10}, L. Alvarez Ruso², I. Bagaturia¹, B. A. Bambah³⁰, P. Bernardini^{3,4},
S. Bertolucci^{5,6}, M. Bhattacharjee⁷, B. Bhuyan⁷, S. Biagi⁸, A. Caminata⁹, A. Cervelli⁵, A. Chatla³⁰, D. Chokheli^{1,10}, A. Chukanov¹⁰, S. Davini⁹, S. Di Domizio^{9,11}, C. Distefano⁸,
L. Di Noto^{9,11}, M. Diwan⁴¹², H. Duyang¹³, P. Evtoukhovitch¹⁰, A. Falcone^{14,15}, O. Fedin¹⁶,
A. Ferrari¹⁷, F. Ferraro^{9,11}, A. Gabrielli⁵, A. Giri³¹, M. Guerzoni⁵, B. Guo¹³, M.A. Iliescu^{18,19}, A. Jha³⁰, A.L. Kataev²⁰, R. Keloth³¹, A. Khvedelidze^{1,10}, B. Kirby¹², U. Kose^{5,19},
S.A. Kulagin²⁰, C. Kullenberg¹⁰, C. Kuruppu¹³, R. Lalnuathunga³¹, I. Lomidze¹, G. Laurenti⁵,
R. Majhi³⁰, V. Maleev¹⁶, G. Mandrioli⁵, N. Mauri^{5,6}, P. Mehta²¹, S.R. Mishra¹³, N. Moggi^{5,6}, R. Mohanta³⁰, A. Montanari⁵, S. Movchan¹⁰, S. Nagu²², A. Nandi⁷, F. Olness²³,
M. Pallavicini^{9,11}, R. Papaleo⁸, L. Pasqualini^{5,6}, L. Patrizii⁵, R. Petti ¹³, V. Pia^{5,6}, F. Poppi^{5,6},
V.K.S. Potukuchi²⁴, M. Pozzato^{5,6}, G. Riccobene⁸, P.R. Sala²⁵, O. Samoylov¹⁰, P. Sapienza⁸, F. H. Sawy^{26,28}, Ja. Singh²², Jy. Singh²², V. Singh²⁷, G. Sirri⁵, L. Stanco²⁶, A. Surdo⁴, N. Talukdar⁷, M. Tenti⁵, F. Terranova^{14,15}, G. Testera⁹, M. Torti^{14,15}, N. Tosi⁵, R. Travaglini²⁶, Z. Tsamalaidze^{1,10}, N. Tsverava^{1,10}, S. Vasina¹⁰, S. Zucchelli^{5,6}, and B. Wonsak²⁹

Significant contributions from Indian colleagues

(docdb will be updated soon)

DUNE docdb # 13262

A TOOL TO REDUCE SYSTEMATICS

• STT designed to offer a control of ν -target(s) similar to e^{\pm} DIS experiments:

- Typical *v*-detectors: systematics from target composition & materials, limited target options;
- Possible accurate control of target(s) by separating target(s) from active detector(s);
- Thin targets spread out uniformly within tracker by keeping low density $0.005 \le
 ho \le 0.18$ g/cm³
- \implies STT can be considered a precision instrument fully tunable/configurable

- Targets (100% purity) account for ~ 97% of STT mass (straws 3%) and can be tuned to achieve desired statistics & resolutions.
- Separation from excellent vertex, angular & timing resolutions.
- Thin targets can be replaced during data taking: C, Ca, Ar, Fe, Pb, etc.

• "Solid" Hydrogen target: $\nu(\bar{\nu})$ -H from subtraction of CH₂ and C targets

- Exploit high resolutions & control of chemical composition and mass of targets in STT;
- Model-independent data subtraction of dedicated C (graphite) target from main CH₂ target;
- Kinematic selection provides large H samples of inclusive & exclusive CC topologies with 80-95% purity and 75-96% efficiency before subtraction.
- \implies Viable and realistic alternative to liquid H_2 detectors

H. Duyang, B. Guo, S.R. Mishra, RP, arXiv:1809.08752 [hep-ph]

BEAM SPECTRA & STATISTICS

CH_2	Н	
Standard CP optimized (1.2 MW):		
33×10 ⁶	3.1×10 ⁶	
12×10^{6}	2.3×10^{6}	
Optimized $ u_{ au}$ appearance (2.4 MW):		
62×10 ⁶	6.0×10 ⁶	
22×10 ⁶	4.0×10^{6}	
	$\begin{array}{c} {\sf CH}_2\\ imized \ (1.2\\ {\sf 33} \times {\sf 10}^6\\ {\sf 12} \times {\sf 10}^6\\ earance \ (2.4\\ {\sf 62} \times {\sf 10}^6\\ {\sf 22} \times {\sf 10}^6\\ \end{array}$	

- + Two LBNF beam options: low-energy CP optimized & high-energy for ν_{τ} appearance
 - LBNF: 120 GeV p, 1.2 MW, 1.1×10²¹ pot/y, ND at 574m;
 - LBNF upgrade: 120 GeV p, **2.4 MW (x 2)**, $\sim 3 \times 10^{21}$ pot/y.
- ◆ Conceivable high-energy run after 5y FHC + 5y RHC with the "standard" beams optimized for CP
- \implies STT could collect a CC statistics $\sim 10^8$ with a high resolution event reconstruction

RECONSTRUCTION & ENERGY SCALES

 Detector simulations with GENIE+GEANT4+edep-sim and FLUKA, preliminary single particle reconstruction (tracks, vertex, clusters) & neutrino energy reconstruction

Low-density design allows accurate in-situ calibrations:

- Momentum scale from $K_0 \rightarrow \pi^+\pi^-$ in STT volume (264,000 in FHC);
- p reconstruction and identification, vertex, etc. from $\Lambda \rightarrow p\pi^-$ in STT volume (293,000 in FHC);
- e^{\pm} reconstruction and identification from $\gamma \rightarrow e^{+}e^{-}$ in STT volume (8 × 10⁶ in FHC).

 \implies Momentum scale uncertainty < 0.2% (NOMAD)

Preliminary event reconstruction with minimal use of MC truth

e^\pm AND γ IDENTIFICATION

 \bullet Design of CH₂ radiators optimized for e^{\pm} ID with Transition Radiation:

- π rejection $\sim 10^3$ with electron efficiency > 90% at E > 0.5 GeV;
- STT performance substantially better than NOMAD for E < 1.5 GeV.

1.1.1.

as '

9.2% within STT tracking volume

 γ in STT (more accurate reconstruction)

Nucl. Instr. and Meth. in Phys. Res. A 411 (1998) 63-74

11 0 1 1

USC

9

 $\mathscr{L}_{kl} = \log \left[\prod_{i=1}^{N_{sh}} P(E_i | k(p_1) * l(p_2)) \prod_{j=1}^{N_{sh}} \right]$ $\times P((E_j^1 + E_j^2) | k(p_1) * l(p_2))$ (2)

CONTROL OF FLUXES

• Relative ν_{μ} flux vs. E_{ν} from exclusive $\nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}$ on Hydrogen:

- Select well reconstructed $\mu^- p \pi^+$ topology on H ($\delta p/p \sim 3.5\%$);
- Cut $|\nu < 0.5(0.75)$ GeV flattens cross-sections reducing uncertainties on E_{ν} dependence;
- Systematic uncertainties dominated by muon energy scale ($\Delta E_{\mu} \sim 0.2\%$ in STT from K₀ mass).

⇒ Dramatic reduction of systematics vs. techniques using nuclear targets

H. Duyang, B. Guo, S.R. Mishra, RP, PLB 795 (2019) 424, arXiv:1902.09480 [hep-ph]

Roberto Petti

USC

• Relative $\bar{\nu}_{\mu}$ flux vs. E_{ν} from exclusive $\bar{\nu}_{\mu}p \rightarrow \mu^{+}n$ QE on Hydrogen:

- E_{ν} from QE kinematics on H and reconstructed direction of interacting neutrons (~80%);
- Cut $\nu < 0.1(0.25)$ GeV flattens cross-sections reducing uncertainties on E_{ν} dependence;
- Systematics and total uncertainties comparable to relative ν_{μ} flux from $\nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}$ on H.

H. Duyang, B. Guo, S.R. Mishra, RP, PLB 795 (2019) 424, arXiv:1902.09480 [hep-ph]

PRECISION FLUX MEASUREMENTS

- Relative ν_{μ} flux vs. E_{ν} from exclusive $\nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}$ on Hydrogen: < 1% $\nu < 0.5$ GeV flattens cross-sections reducing uncertainties on E_{ν} dependence.
- Relative $\bar{\nu}_{\mu}$ flux vs. E_{ν} from exclusive $\bar{\nu}_{\mu}p \rightarrow \mu^{+}n$ QE on Hydrogen: < 1% $\nu < 0.25$ GeV: uncertainties comparable to relative ν_{μ} flux from $\nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}$ on H.
- Absolute $\bar{\nu}_{\mu}$ flux from QE $\bar{\nu}_{\mu}p \rightarrow \mu^{+}n$ on H with $Q^{2} < 0.05$ GeV² (neutron β decay)
- ◆ Absolute ν_{μ} flux from $\nu e^- \rightarrow \nu e^-$ elastic scattering: ~ 2% ⇒ Complementary to measurement in LAr TPC with small systematics
- Ratio of $\bar{\nu}_{\mu}/\nu_{\mu}$ vs. E_{ν} from coherent π^{-}/π^{+} on C (both CH₂ and graphite) \implies Excellent angular resolution (t variable) and light isoscalar target
- ◆ Ratio of ν_e/ν_μ AND $\bar{\nu}_e/\bar{\nu}_\mu$ vs. E_ν from CH₂ (& H) targets ⇒ Excellent e^{\pm} charge measurement and e^{\pm} identification (~ 80k $\bar{\nu}_e$ CC in FHC)
- Determination of parent $\mu/\pi/K$ distributions from $\nu(\bar{\nu})$ -H (& CH₂) at low- ν \implies Direct in-situ measurement for flux extrapolation to FD

- + Hydrogen offers valuable information to reduce systematics:
 - Constraining the nuclear smearing from comparison of Ar and H targets within SAME detector;
 - Calibration of the (anti)neutrino energy scale.
- Providing necessary redundancy against MC/model & unexpected discrepancies:
 - Ar detectors alone (even ideal) cannot resolve nuclear smearing & related systematics;
 - DUNE-Prism alone sensitive to (beam) model & tuning to resolve off-axis discrepancies.
 - ⇒ Synergy between DUNE-Prism and Hydrogen measurements in STT to resolve systematics from beam modeling & nuclear smearing

Comparing Ar and H measurements imposes stringent constraints on the nuclear smearing in Ar

Understanding of nuclear smearing (response function for unfolding) crucial for systematics in DUNE oscillation analyses

♦ Study a complete set of kinematic variables sensitive to nuclear smearing;

- + Exclusive topologies ($\mu p\pi$, μn , etc.) in both H and Ar;
- Selection of Ar events with a total charge at the primary vertex $C_{\text{vtx}} = 0$ for neutrinos and $C_{\text{vtx}} = +1$ for antineutrinos.

 \implies Additional handles to resolve potential degeneracies in the nuclear smearing

GENERAL PURPOSE PHYSICS FACILITY

- Possible to address the main limitations of neutrino experiments (statistics, control of targets & fluxes) largely reducing the precision gap with electron experiments.
 - ⇒ Exploit the unique properties of the (anti)neutrino probe to study fundamental interactions & structure of nucleons and nuclei
- ◆ Turn the LBNF ND site into a general purpose v&v physics facility with broad program complementary to ongoing fixed-target, collider and nuclear physics efforts:
 - Measurement of $\sin^2 \theta_W$ and electroweak physics;
 - Precision tests of isospin physics & sum rules (Adler, GLS);
 - Measurements of strangeness content of the nucleon $(s(x), \bar{s}(x), \Delta s, \text{ etc.})$;
 - Studies of QCD and structure of nucleons and nuclei;
 - Precision tests of the structure of the weak current: PCAC, CVC;
 - Measurement of nuclear physics and (anti)-neutrino-nucleus interactions; etc.
 - Precision measurements as probes of New Physics (BSM);
 - Searches for New Physics (BSM): sterile neutrinos, NSI, NHL, etc.....
 - ⇒ Discovery potential & hundreds of diverse physics topics
- No additional requirements: same control of targets & fluxes reducing LBL systematics

ELECTROWEAK MEASUREMENTS

- Complementarity with colliders & low-energy measurements with comparable sensitivity:
 - <u>Different scale</u> of momentum transfer with respect to LEP/SLD (off Z^0 pole);
 - Direct measurement of neutrino couplings to Z^0 \implies Only other measurement LEP $\Gamma_{\nu\nu}$
 - Single experiment to directly check the running of $\sin^2 \theta_W$;
 - Independent cross-check of the NuTeV $\sin^2 \theta_W$ anomaly (~ 3σ in ν data) in a similar Q^2 range.

- ◆ Different independent channels:
 R^ν = σ^ν_{NC}/σ^ν_{CC} in ν-N DIS (~0.35%)
 R_{νe} = σ^p_{NC}/σ^ν_{NC} in ν-e⁻ NC elastic (~1%)
 NC/CC ratio (νp → νp)/(νn → μ⁻p) in (quasi)-elastic interactions
 NC/CC ratio ρ⁰/ρ⁺ in coherent processes
 ⇒ Combined EW fits like LEP
- Further reduction of uncertainties depending upon beam exposure

ADLER SUM RULE & ISOSPIN PHYSICS

The Adler integral provides the ISOSPIN of the target and is derived from current algebra:

 $S_A(Q^2) = \int_0^1 \frac{dx}{2x} \left(F_2^{\bar{\nu}p} - F_2^{\nu p} \right) = I_p$

- At large Q^2 (quarks) sensitive to $(s \bar{s})$ asymmetry, isospin violations, heavy quark production
- Apply to nuclear targets and test nuclear effects (S. Kulagin and R.P. PRD 76 (2007) 094023)

 \implies Precision test of S_A at different Q^2 values

- Only measurement available from BEBC based on 5,000
 νp and 9,000 νp (D. Allasia et al., ZPC 28 (1985) 321)
- Direct measurement of $F_{2,3}^{\nu n}/F_{2,3}^{\nu p}$ free from nuclear uncertainties and comparisons with e/μ DIS $\implies d/u$ at large x and verify limit for $x \rightarrow 1$

(Synergy with 12 GeV JLab program)

Process	$ u(ar{ u}) ext{-}H$	
Standard CP optimized:		
$ u_{\mu}$ CC (5 y)	3.1×10 ⁶	
$ar{ u}_{\mu}$ CC (5 y)	2.3×10^{6}	
Optimized $ u_{ au}$ appearance:		
$ u_{\mu}$ CC (2 y)	$6.0 imes 10^{6}$	
$ u_{\mu}$ CC (2 y)	4.0×10 ⁶	

NUCLEAR MODIFICATIONS OF NUCLEON PROPERTIES

• Availability of ν -H & $\overline{\nu}$ -H allows direct measurement of nuclear modifications of $F_{2,3}$:

$$R_A \stackrel{\text{def}}{\equiv} \frac{2F_{2,3}^{\nu A}}{F_{2,3}^{\nu p} + F_{2,3}^{\nu p}}(x, Q^2) = \frac{F_{2,3}^{\nu A}}{F_{2,3}^{\nu N}}$$

- Comparison with e/μ DIS results and nuclear models;
- Study flavor dependence of nuclear modifications using $\nu \& \bar{\nu} (W^{\pm}/Z \text{ helicity, C-parity, Isospin});$
- Effect of the axial-vector current.
- \bullet Study nuclear modifications to parton distributions in a wide range of Q^2 and x.
- ◆ Study non-perturbative contributions from High Twists, PCAC, etc. and quark-hadron duality in different structure functions $F_2, xF_3, R = F_L/F_T$.
- Nuclear modifications of nucleon form factors e.g. using NC elastic, CC quasi-elastic and resonance production.
- ◆ Coherent meson production off nuclei in CC & NC and diffractive physics.

⇒ Synergy with Heavy Ion and EIC physics programs for cold nuclear matter effects.

Ratio of Charged Current structure functions on 207 Pb and isoscalar nucleon (p+n)/2

S. Kulagin and R.P., NPA 765 (2006) 126; PRD 76 (2007) 094023, PRC 90 (2014) 045204

20

SUMMARY

 STT options offer a control of configuration, material & mass of neutrino targets similar to electron experiments & fully tunable suite of various target materials.

 \implies High resolution detector with momentum scale uncertainty <0.2%

- Concept of "solid" hydrogen target: high statistics $\mathcal{O}(10^6)$ samples of $\nu(\bar{\nu})$ -hydrogen interactions, allowing precisions in the measurement of $\nu \& \bar{\nu}$ fluxes < 1%.
- STT combined with the intensity and $\nu(\bar{\nu})$ spectra at LBNF enable a unique combination of physics measurements within the ND complex:
 - Reduction of systematic uncertainties for long-baseline oscillation analyses;
 - Hundreds of diverse physics topics from precision measurements and searches for new physics, complementary to ongoing fixed-target, collider and nuclear physics efforts.
 - → Many opportunities for valuable contributions: hardware, simulations, reconstruction, physics sensitivity studies, etc.

New ideas or suggestions to further broaden physics scope welcomed

Backup slides