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STT CONFIGURATIONS CONSIDERED

(from talk by S. Bertolucci at LBNC, 6 December 2019)

STT mass: 7.4 tons STT mass: 2.0 tons
CHs FV mass: 4.7 tons CHs FV mass: 1.44 tons
Graphite F'V mass: 504 kg Graphite F'V mass: 160 kg
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4 Description of full STT option with the results of complete detector simulations, event
reconstruction and physics performance is available in DUNE docdb # 13262:

https://docs.dunescience.org/cgi-bin/private/ShowDocument?docid=13262

= Benchmark for the STT performance in SAND and physics sensitivity studies

4 Contribution (# 131) to the European Particle Physics Strategy Update 2018-2020:
https://indico.cern.ch/event/765096/contributions/3295805/

4 Ongoing sensitivity studies to evaluate the physics performance of 3DST+STT:
rescale statistics by fiducial mass & study reconstruction/acceptance effects
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Significant contributions from Indian colleagues

(docdb will be updated soon)

DUNE docdb # 13262
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A TOOL TO REDUCE SYSTEMATICS 5

4 STT designed to offer a control of v-target(s) similar to e* DIS experiments:

e Typical v-detectors: systematics from target composition & materials, limited target options;
e Possible accurate control of target(s) by separating target(s) from active detector(s);

e Thin targets spread out uniformly within tracker by keeping low density|0.005 < p < 0.18 g/cm? |.

— STT can be considered a precision instrument fully tunable/configurable

4 Targets (100% purity) account for
~ 97% of STT mass (straws 3%)
and can be tuned to achieve desired

statistics & resolutions.

4 Separation from excellent vertex,
angular & timing resolutions.

4 Thin targets can be replaced during
data taking: C, Ca, Ar, Fe, Pb, etc.
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4+ “Solid” Hydrogen target: v(v)-H from subtraction of CHy and C targets

e Exploit high resolutions & control of chemical composition and mass of targets in STT,;
e Model-independent data subtraction of dedicated C (graphite) target from main CHy target;
e Kinematic selection provides large H samples of inclusive & exclusive CC topologies

with 80-95% purity and 75-96% efficiency before subtraction.

= Viable and realistic alternative to liquid Hy detectors
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BEAM SPECTRA & STATISTICS 7

x10 |
0.25 | OPTIMIZED < APP.
ool L i e STANDARD CP OPT. Interactions CH. H

Standard CP optimized (1.2 MW):

v, CC (FHC, 5y) | 33x10° | 3.1x10°
v, CC (RHC, 5y) | 12x10° | 2.3x10°
Optimized v appearance (2.4 MW):

v, CC (FHC, 2y) | 62x10° | 6.0x10°
v, CC (RHC, 2y) | 22x10° | 4.0x10°

015 |

0.1 -

0.05 |

4 Two LBNF beam options: low-energy CP optimized & high-energy for v, appearance
o LBNF: 120 GeV p, 1.2 MW, 1.1x10%' pot/y, ND at 574m;
o LBNF upgrade: 120 GeV p,|2.4 MW (x 2) |, ~3x 10%! pot/y.

4 Conceivable high-energy run after 5y FHC + 5y RHC with the "standard” beams optimized for CP

— STT could collect a CC statistics ~ 10° with a high resolution event reconstruction
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RECONSTRUCTION & ENERGY SCALES

4 Detector simulations with GENIE4+GEANT4+edep-sim and FLUKA, preliminary single
particle reconstruction (tracks, vertex, clusters) & neutrino energy reconstruction

4 Low-density design allows accurate in-situ calibrations:

e Momentum scale from Ky — 7wm~

in STT volume (264,000 in FHC);

e p reconstruction and identification, vertex, etc. from A — pr~ in STT volume (293,000 in FHC);

+

e ¢& reconstruction and identification from v — eTe™ in STT volume (8 x 10° in FHC).

=—> Momentum scale uncertainty < 0.2% (NOMAD)
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e AND ~ IDENTIFICATION

4 Design of CH, radiators optimized for e* ID with Transition Radiation:

e T rejection ~ 103 with electron efficiency > 90% at E > 0.5 GeV:
e STT performance substantially better than NOMAD for EE < 1.5 GeV.

4 Average conversion probability v — ete™ 29.2% within STT tracking volume

4 About 49% of ™ with at least one converted v in STT (more accurate reconstruction)
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CONTROL OF FLUXES 10

4 Relative v, flux vs. E, from exclusive v,p — u~pr™ on Hydrogen:

o Select well reconstructed u~pr™ topology on H (6p/p ~ 3.5%);

e Cut|v < 0.5(0.75) GeV/| flattens cross-sections reducing uncertainties on E,, dependence;

e Systematic uncertainties dominated by muon energy scale (AE, ~ 0.2% in STT from Ky mass).

= Dramatic reduction of systematics vs. techniques using nuclear targets
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11
4 Relative v, flux vs. E, from exclusive v,p — pu*n QE on Hydrogen:

e F, from QE kinematics on H and reconstructed direction of interacting neutrons (~80%);

e Cut|v < 0.1(0.25) GeV/| flattens cross-sections reducing uncertainties on E,, dependence;

o Systematics and total uncertainties comparable to relative v, flux from v,p — p~pr™ on H.
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PRECISION

FLUX MEASUREMENTS 12

4 Relative v, flux vs. E, from exclusive v,p — u~pr™ on Hydrogen: < 1%

v < 0.5 GeV

flattens cross-sections reducing uncertainties on FE,, dependence.

4 Relative v, flux vs. E, from exclusive v,p — pu*n QE on Hydrogen: < 1%

v < 0.25 GeV|:

uncertainties comparable to relative v,, flux from v,p — " pr™* on H.

4 Absolute v, flux from QE v,p — p'n on H with Q* < 0.05 GeV* (neutron (3 decay)

4 Absolute v, flux from ve~ — ve~ elastic scattering: ~ 2%
= Complementary to measurement in LAr TPC with small systematics

4 Ratio of v, /v, vs. E, from coherent 7~ /7t on C (both CHy and graphite)

= Excellen

t angular resolution (t variable) and light isoscalar target

4 Ratio of v. /v, AND v, /v, vs. E, from CHy (& H) targets

= Excellen

t et charge measurement and e* identification (~ 80k v, CC in FHC)

4 Determination of parent ji/7 /K distributions from v(v)-H (& CHs) at low-v
= Direct in-situ measurement for flux extrapolation to FD
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CONSTRAINING NUCLEAR SMEARING
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4 Hydrogen offers valuable information to reduce systematics:

e Constraining the nuclear smearing from comparison of Ar and H targets within SAME detector;
e Calibration of the (anti)neutrino energy scale.

4 Providing necessary redundancy against MC/model & unexpected discrepancies:

o Ar detectors alone (even ideal) cannot resolve nuclear smearing & related systematics;
o DUNE-Prism alone sensitive to (beam) model & tuning to resolve off-axis discrepancies.

= Synergy between DUNE-Prism and Hydrogen measurements in STT
to resolve systematics from beam modeling & nuclear smearing

Roberto Petti
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4 Study a complete set of kinematic variables sensitive to nuclear smearing;
4 Exclusive topologies (upm, un, etc.) in both H and Ar;
4 Selection of Ar events with a total charge at the primary vertex

Cyix = 0 for neutrinos and C, = +1 for antineutrinos.

— Additional handles to resolve potential degeneracies in the nuclear smearing
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GENERAL PURPOSE PHYSICS FACILITY 16

4 Possible to address the main limitations of neutrino experiments (statistics, control of
targets & fluxes) largely reducing the precision gap with electron experiments.

= Exploit the unique properties of the (anti)neutrino probe
to study fundamental interactions & structure of nucleons and nuclei

4 Turn the LBNF ND site into a general purpose v& v physics facility with broad
program complementary to ongoing fixed-target, collider and nuclear physics efforts:

o Measurement of sin? Oy and electroweak physics;

e Precision tests of isospin physics & sum rules (Adler, GLS);

o Measurements of strangeness content of the nucleon (s(x),s(x), As, etc.);

e Studies of QCD and structure of nucleons and nuclei;

e Precision tests of the structure of the weak current: PCAC, CV(,;

e Measurement of nuclear physics and (anti)-neutrino-nucleus interactions; etc. .....
e Precision measurements as probes of New Physics (BSM);

e Searches for New Physics (BSM): sterile neutrinos, NSI, NHL, etc.....

= Discovery potential & hundreds of diverse physics topics

4 No additional requirements: same control of targets & fluxes reducing LBL systematics
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ELECTROWEAK MEASUREMENTS 17

4 Complementarity with colliders & low-energy measurements with comparable sensitivity:

Different scale of momentum transfer with respect to LEP/SLD (off Z° pole);

Direct measurement of neutrino couplings to Z°

= Only other measurement LEPT',,,

Single experiment to directly check the running of sin® 6y ;

Independent cross-check of the NuTeV sin® Oy, anomaly (~ 30 in v data) in a similar Q? range.
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ADLER SUM RULE & ISOSPIN PHYSICS

ISOSPIN

of the target and is derived from current algebra:

Sa(Q) =y 32 (B~ F57) = 1,

4 The Adler integral provides the

Statistical Uncertainty

o At large Q? (quarks) sensitive to (s — 5) asymmetry,
isospin violations, heavy quark production

e Apply to nuclear targets and test nuclear effects
(S. Kulagin and R.P. PRD 76 (2007) 094023)

0.15

o
-

0.05

o

-0.05

-0.1

-0.15

— Precision test of S, at different ()* values

4 Only measurement available from BEBC based on 5,000
vp and 9,000 Dp (D. Allasia et al., ZPC 28 (1985) 321)

4 Direct measurement of Fy3 /I, free from nuclear un-
certainties and comparisons with e/u DIS

— d/u at large x and verify limit for v — 1

(Synergy with 12 GeV JLab program)
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Process v(v)-H
Standard CP optimized:
v, CC(by) 3.1x10°
v, CC(by) 2.3x10°
Optimized v, appearance:
v, CC (2y) 6.0x10°
v, CC (2y) 4.0x10°
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NUCLEAR MODIFICATIONS OF NUCLEON PROPERTIES

4 Availability of v-H & v-H allows direct measurement of nuclear modifications of Fj 3:

def oA Fra

b 2,3 2\ . 2,3

Ry = im0, Q7) = 523
237153 2,3

e Comparison with e/ DIS results and nuclear models;
e Study flavor dependence of nuclear modifications using v & v (W= /Z helicity, C-parity, Isospin);
o Effect of the axial-vector current.

4 Study nuclear modifications to parton distributions in a wide range of Q* and .

4 Study non-perturbative contributions from High Twists, PCAC, etc. and quark-hadron
duality in different structure functions Fs, zF3, R = F/Fr.

4 Nuclear modifications of nucleon form factors e.g. using NC elastic, CC quasi-elastic
and resonance production.

4 Coherent meson production off nuclei in CC & NC and diffractive physics.

= Synergy with Heavy lon and EIC physics programs for cold nuclear matter effects.

Roberto Petti
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SUMMARY

4 STT options offer a control of configuration, material & mass of neutrino targets
similar to electron experiments & fully tunable suite of various target materials.

— High resolution detector with momentum scale uncertainty <0.2%

4 Concept of “solid” hydrogen target: high statistics O(10°%) samples of v(i7)-hydrogen
interactions, allowing precisions in the measurement of v & v fluxes < 1%.

4 STT combined with the intensity and v(v) spectra at LBNF enable a unique
combination of physics measurements within the ND complex:

e Reduction of systematic uncertainties for long-baseline oscillation analyses;

e Hundreds of diverse physics topics from precision measurements and searches for new physics,
complementary to ongoing fixed-target, collider and nuclear physics efforts.

= Many opportunities for valuable contributions:
hardware, simulations, reconstruction, physics sensitivity studies, etc.

New ideas or suggestions to further broaden physics scope welcomed
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