

3D projection scintillator tracker (3DST) in SAND

Guang Yang (Stony Brook)

Feb 29 2020

Full SAND reference design

3D projection scintillator tracker (3DST)

- Plastic scintillator detector with 1 cm x 1 cm x 1cm cubes
- Light collected by 3 wavelength shifting fibers
- Each cube coated with TiO2 to keep light entrapped inside the cube
- Read out by MPPC at 3 faces

Stony Brook University

- Coating thickness : 50 um
- WLS fiber diameter : ~1 mm

- Fully active detector : no dead material as a massive target
- Uniform : neutrino interaction is not depending on the interaction location
- Full solid angle acceptance
- Pseudo-3D reconstruction with fine granularity
- Super fast time resolution : NEUTRON!

3DST in SAND

 Goal in short: get all final state particle information in good precision for each desired exclusive channel

- 3DST provides :
- Massive fully active CH target

Stony Brook University

- Good vertex activity detection
- Good tracking ability for muons
- Precise energy and direction for photon/electron
- Low threshold for hadrons
- Neutron detection!

Stony Brook University Synergy with T2K upgrade

- Functionally identical to the T2K SuperFGD in T2K ND280
- Share the effort including hardware and software such as parts production, R&D, neutrino event reconstruction etc.

Super-FGD proto-type

arXiv. 1901.03750

Stony Brook University

3DST performance

- Relatively high statistics with HydroCarbon target
- Tracking particles over 4pi space
- Low proton threshold

Channel	ν mode	$\bar{\nu}$ mode
$ u_{\mu}$ charged current (CC) inclusive	15.3×10^{6}	6.1×10^{6}
CCQE	3.9×10 ⁶	2.4×10^{6}
CC π° inclusive	5.0×10^{6}	1.4×10^{6}
neutral current (NC) total	5.2×10^{6}	3.3×10^{6}
$ u_{\mu}$ -e ⁻ scattering	349	190
$ u_{\mu}$ CC coherent	7.49×10^{5}	4.6×10^{5}
$ u_{\mu}$ CC low- $ u$ ($ u$ <250 MeV)	1.74×10^{6}	1.4×10^{6}
$ u_e \ CC \ coherent$	7.3×10 ³	4.3×10 ³
$ u_e \text{ CC low-} u$ ($ u$ <250 MeV)	1.9×10^{4}	1.5×10^4
$ u_e \text{ CC inclusive}$	2.4×10^{5}	8.7×10 ⁴

For a year

3DST performance

- Super fast and high light yield
- Radiation length ~ 40 cm, TPC and ECAL needed in addition to 3DST
- ~100% charge ID for tracks below 3 GeV

Stony Brook University

Stony Brook University Physics motivation in DUNE ND

- Monitoring the beam stability : giving alert if any unexpected beam condition change happens
- Neutron detection : providing a flux constraint with neutron measurement
- A different target : providing a unique way to tune the neutrino interaction modeling

Beam accidents

* Stony Brook University

Necessity of a nu beam monitor

- DUNE-PRISM needs a good knowledge of the neutrino flux at all time
- Flux fit in DUNE-PRISM can be biased if we misunderstand the beam condition
 A.0
 A.0</l
- Faking with a case that when ArgonCube and MPD off-axis beam starts to change

Stony Brook University Rate monitor \rightarrow 7 ton each module Spectrometer \rightarrow 8.7 FV

vs vs	±5m	• 3DS mea more bear	T spectra surement e sensitiv n conditio	l t much e to the on changes
	Par	ameter description Neec.	Significance, $_{ m V}$	$\sqrt{\chi^2}$
Beam parameter	Nominal	Changed	Rate-only monitor	SAND
proton target density	1.71 g/cm^3	1.74 g/cm^3	1.9	7.8
proton beam width	2.7 mm	2.8 mm	3.0	6.7
proton beam offset x	N/A	-0.45 mm	0.7	19.9
proton beam $ heta \phi$	N/A	0.07 mrad $ heta$ and 1.5707 ϕ	0.2	12.5
horn 1 along x	N/A	0.5 mm	1.9	8.8
horn 1 along y	N/A	0.5 mm	0.7	12.8
horn 2 along x	N/A	0.5 mm	0.2	9.9
horn 2 along y	N/A	0.5 mm	0.4	6.3

Neutron detection in Minerva

- Minerva sees neutrons.
- Neutron multiplicity, energy and spatial distributions, timing all fairly well described by simulation in Minerva.

Stony Brook University Neutron detection in 3DST

- Neutron is the last and important piece to fully reconstruct the neutrino energy
- With super good time resolution, time-of-flight can be used to measure the neutron kinetic energy.
- Thus, we can do flux constraint and cross section model tuning with this neutron energy measurement.

Stony Brook University Neutron detection in 3DST

- Out-of-FV background is below 2% due to the tight time cut
- Secondary neutron and gamma background is being studied
- Signal neutron energy resolution mostly at 20-30% level

Feb 29 2020

* Stony Brook University

Flux constraint - Single transverse variable

- Single transverse variable (dpt) cut provides a less-FSI sample.
- Selecting CC0pi as a demonstrator; can potential do single pion channels as well.

Reco v (GeV)

2.0

1.8

1.6

1.2

1.0

0.8

0.6

0.4

0.2

0.8.0

0.2

0.4

0.6

0.8

India Workshop

1.8 2.0

Flux constraint - low nu

 Here nu defined as energy transferred to the nucleus

No neutron detection

1.0

1.2

1.4

1.6

 Low nu cross section is flat along neutrino energy \rightarrow flux shape info. can be constrained.

Neutron detection w/ KE measurement

Stony Brook University

Neutron beam test

- Los Alamos National Laboratory provides neutron beam ranged from 0 -800 MeV
- We have two run time: ~ 3 weeks at 15L 90 m location

 \sim 3 days at 15R 20 m location

Two prototypes

- SuperFGD prototype being used for the charged particle beam test in CERN (24x8 48)
- US-Japan prototype uses some new designs that will be used in the T2K upgrade, probably 3DST (8x8x32)
- They can be combined in a number of ways

Neutron beam time structure

We have 675 us trigger window to cover each macropulse

Stony Brook University

Gamma flash + micropulse t0 are available

- Wrap-around can be handled with cut on low energy deposit
- Statistically wrap-around is not significant

Feb 29 2020

 10^{2}

1

10

 10^2 10^3 neutron energy (MeV)

Run plan

- Our data rate is several kHz at 90 m location
- 20 m location is higher with larger solid angle and slightly smaller collimator setting
- SFGD prototype:
 - 90 m for 16 days : z axis aligned with beam 10 days

rotated 180 about y for 4 days

rotated another 10 for 2 days

- 20 m for 5 days: z axis aligned for half a day

rotated 5 for 4 and a half days

- US-Japan prototype:
 - 20 m for 4 hours : rotated 5 clockwise

21/33

Beam

Stony Brook University Stone SuperFGD at 90 m location

• SuperFGD prototype in the 90 m shed

Feb 29 2020

Stony Brook University US-Japan prototype

 8x8x32 with novel mechanical box and MPPC; same FEBs to superFGD prototype

Event topology

 We rotated detector for various angles to understand the fiber/MPPC behaviour

Stony Brook University

Feb 29 2020

* Stony Brook University US-Japan Neutron candidates

Feb 29 2020

Tuning xsec model

- Models that moves beyond simple Fermi-gas approximations on the timescale of DUNE are expected: An example is the Relativistic Mean Field (RMF) model https://arxiv.org/pdf/nucl-th/9905060.pdf
- RMF calculates interaction cross section on different nuclear targets in the same framework using the same physics
- Working great with electron scattering data

Summary

- 3DST is a fully active 4pi target that can serve as a nice neutrino beam monitor.
- Neutron detection is unprecedented in 3DST.
- 3DST provides a unique target to tune the neutrino interaction models.

3DST performance

Stony Brook University

3DST performance

- Radiation length \sim 40 cm, for all pi0 and electron containment, may need downstream or side ECALs.
- 2 m depth 3DST contains 60% pi0 which deposits > 95% energy.

Stony Brook University

Stony Brook University

3DST performance

- Few percent resolution can be achieved for contained electrons.
- 15%-20% track momentum resolution
 with 0.4 T B-field in interested energy region.
- Good charge ID for tracks below 3 GeV.

